1. 程式人生 > >【POJ3171】Cleaning Shifts 帶權區間最小覆蓋

【POJ3171】Cleaning Shifts 帶權區間最小覆蓋

題目大意:給定一個長度為 N 的序列,求帶權區間最小覆蓋。

題解:設 \(dp[i]\) 表示從左端點到 i 的最小權值是多少,則狀態轉移為:\(dp[e[i].ed]=min\{dp[j],j\in[e[i].st-1,e[i].ed-1] \}\),初始化 \(dp[st-1]=0\) 即可。因此,這裡用線段樹來維護區間最小值即可。不過這道題需要注意的點有很多,首先開始區間的下標從 0 開始,因此需要注意避免下標為負數的情況,我採用了所有座標加 1 的寫法,結尾要注意所給區間排序之後末尾可能出現大於給定的結尾的情況,線段樹需要維護兩者較大的值。其次是狀態轉移時,線段樹中的 modify 函式並不是直接修改值,而是需要比較一下大小再決定是否修改。(在這裡WA了好長時間QAQ)

程式碼如下

#include <cstdio>
#include <algorithm>
#include <cstring>
#include <iostream>
using namespace std;
const int maxn=1e5;
const int inf=0x3f3f3f3f;

inline int read(){
    int x=0,f=1;char ch;
    do{ch=getchar();if(ch=='-')f=-1;}while(!isdigit(ch));
    do{x=x*10+ch-'0';ch=getchar();}while(isdigit(ch));
    return f*x;
}

struct node{
    #define ls t[k].lc
    #define rs t[k].rc
    int lc,rc,mi;
}t[maxn<<1];
int tot=1;
int n,st,ed,ans,dp[maxn],l_b,r_b;
struct seg{
    int st,ed,w;
    bool operator<(const seg& y)const{return this->ed<y.ed;}
}e[10010];

inline void pushup(int k){t[k].mi=min(t[ls].mi,t[rs].mi);}

void build(int k,int l,int r){
    if(l==r){t[k].mi=dp[l];return;}
    int mid=l+r>>1;
    ls=++tot,build(ls,l,mid);
    rs=++tot,build(rs,mid+1,r);
    pushup(k);
}

void modify(int k,int l,int r,int pos,int val){
    if(l==r){t[k].mi=min(t[k].mi,val);return;}
    int mid=l+r>>1;
    if(pos<=mid)modify(ls,l,mid,pos,val);
    else modify(rs,mid+1,r,pos,val);
    pushup(k);
}

int query(int k,int l,int r,int x,int y){
    if(l==x&&r==y)return t[k].mi;
    int mid=l+r>>1;
    if(y<=mid)return query(ls,l,mid,x,y);
    else if(x>mid)return query(rs,mid+1,r,x,y);
    else return min(query(ls,l,mid,x,mid),query(rs,mid+1,r,mid+1,y));
}

void read_and_parse(){
    memset(dp,0x3f,sizeof(dp));
    n=read(),st=read()+1,ed=read()+1;//偏移量 
    for(int i=1;i<=n;i++){
        scanf("%d%d%d",&e[i].st,&e[i].ed,&e[i].w);
        ++e[i].st,++e[i].ed;    
    }
    sort(e+1,e+n+1);
    r_b=max(ed,e[n].ed),l_b=st-1;
    dp[st-1]=0;
    build(1,l_b,r_b);
}

void solve(){
    for(int i=1;i<=n;i++){
        int mi=query(1,l_b,r_b,e[i].st-1,e[i].ed-1);
        if(mi==inf)continue;
        dp[e[i].ed]=mi+e[i].w;
        modify(1,l_b,r_b,e[i].ed,dp[e[i].ed]);
    }
    ans=inf;
    for(int i=ed;i<=r_b;i++)ans=min(ans,dp[i]);
    if(ans==inf)puts("-1");
    else printf("%d\n",ans);
}

int main(){
    read_and_parse();
    solve();
    return 0;
}