1. 程式人生 > >小貓爬山 列舉法

小貓爬山 列舉法

小貓爬山

Problem Description
Freda和rainbow飼養了N只小貓,這天,小貓們要去爬山。經歷了千辛萬苦,小貓們終於爬上了山頂,但是疲倦的它們再也不想徒步走下山了(嗚咕>_<)。
Freda和rainbow只好花錢讓它們坐索道下山。索道上的纜車最大承重量為W,而N只小貓的重量分別是C1、C2……CN。當然,每輛纜車上的小貓的重量之和不能超過W。每租用一輛纜車,Freda和rainbow就要付1美元,所以他們想知道,最少需要付多少美元才能把這N只小貓都運送下山?
Input
第一行包含兩個用空格隔開的整數,N和W。
接下來N行每行一個整數,其中第i+1行的整數表示第i只小貓的重量Ci


Output
輸出一個整數,最少需要多少美元,也就是最少需要多少輛纜車。
Sample Input
5 1996
1
2
1994
12
29
Sample Output
2
Tip
對於 100%的資料,1≤N≤18,1≤Ci≤W≤108

觀察本題,我們可能會想到動態規劃之類的辦法,但認真考慮,卻發現可行性不高。
因為這道題應當是一個簡單的貪心思路,找出一組貓,它們的重量低於W且比其他符合條件的組合的重量更大。
所以,我們知道N≤18,那麼我們就直接列舉所有的情況,一次查詢的複雜度只有O(218(262144)),所以我們可以直接打出如下程式碼。

不過,在程式碼中,為了處理起來方便,我將列舉小貓轉化成尋找路徑,通過一個深度優先搜尋的演算法來達到列舉的目的。並且,我對小貓體重進行排序,這樣對於相同的體重的組合,如果有更重的小貓,那麼更重的小貓的組合會被選擇送上纜車,來保證演算法的正確性。

#include <cstdio>
 
using namespace std;
 
int n,w,tot,ans,qt,tail;
int q[19],d[19],c[19],h[19],bo[19];
struct edge{
    int to[200],next[200];
    void add(int i,int j)
    {
        to[++tot]=j;
        next[tot]=h[i];
        h[i]=tot;
    }
}e;
 
inline int read()
{
    int x=0;char c=getchar();
    while ((c<'0')||(c>'9'))
        c=getchar();
    while ((c>='0')&&(c<='9'))
        x=(x<<3)+(x<<1)+c-'0',c=getchar();
    return x;
}
 
void qsort(int ,int );
void dfs(int );
 
int main()
{
    n=read();w=read();
    for (int i=1;i<=n;i++)
        c[i]=read();
    qsort(1,n);
    for (int i=n;i>1;i--)
        for (int j=i-1;j;j--)
            e.add(i,j);
    while (bo[0]<n)
    {
        for (int k=n;k;k--)
            if (!bo[k])
            {
                tail=1;q[0]=qt=0;
                d[tail]=k;d[0]=c[k];
                dfs(k);
                goto outit;
            }
        outit:
            for (int i=1;i<=qt;i++)
                bo[q[i]]=true;
            bo[0]+=qt;
            ans++;
    }
    printf("%d",ans);
    return 0;
}
 
void dfs(int now)
{
    if (d[0]==w)
        goto down;
    for (int jump=h[now];jump;jump=e.next[jump])
    {
        int p=e.to[jump];
        if (bo[p])
            continue;
        if (c[p]+d[0]<=w)
        {
            d[0]+=c[p];
            d[++tail]=p;
            dfs(p);
            tail--;
            d[0]-=c[p];
        }
    }
    down :
        if (d[0]>q[0])
        {
            for (int j=0;j<=tail;j++)
                q[j]=d[j];
            qt=tail;
        }
    return ;
}
 
void qsort(int l,int r)
{
    int a=l,b=r;
    int mid=c[(a+b)>>1];
    while (a<=b)
    {
        while (c[a]<mid)
            a++;
        while (c[b]>mid)
            b--;
        if (a<=b)
        {
            int f=c[a];
            c[a]=c[b];
            c[b]=f;
            a++;b--;
        }
    }
    if (l<b)
        qsort(l,b);
    if (a<r)
        qsort(a,r);
    return ;
}