311. Sparse Matrix Multiplication - Medium
阿新 • • 發佈:2018-12-02
稀疏 == ble bsp The 兩個 ger .org ont
Given two sparse matrices A and B, return the result of AB.
You may assume that A‘s column number is equal to B‘s row number.
Example:
Input: A = [ [ 1, 0, 0], [-1, 0, 3] ] B = [ [ 7, 0, 0 ], [ 0, 0, 0 ], [ 0, 0, 1 ] ] Output: | 1 0 0 | | 7 0 0 | | 7 0 0 | AB = | -1 0 3 | x | 0 0 0 | = | -7 0 3 | | 0 0 1 |
M1: brute force + 忽略0
時間:O(N^3),空間:O(1)
class Solution { public int[][] multiply(int[][] A, int[][] B) { int m = A.length, n = A[0].length, l = B[0].length; // B.length == n int[][] AB = new int[m][l]; for(int i = 0; i < m; i++) { for(int j = 0; j < n; j++) {if(A[i][j] == 0) continue; for(int k = 0; k < l; k++) { if(B[j][k] != 0) AB[i][k] += A[i][j] * B[j][k]; } } } return AB; } }
M2: hash table
用兩個hashmap分別存A,B中的非零元素,記下非零元素及其行、列號。然後再遍歷A的keyset,如果在mapB中存在與之對應相乘的元素,遍歷B得到乘加和。因為忽略了大量0,當矩陣很稀疏時,將非0元素存入hashmap的時間相對乘加運算可以忽略,因此速度可以得到提高。
時間:O(N^3),空間:O(N)
class Solution { public int[][] multiply(int[][] A, int[][] B) { HashMap<Integer, HashMap<Integer, Integer>> mapA = new HashMap<>(); // <i, <j, A[i][j]>> HashMap<Integer, HashMap<Integer, Integer>> mapB = new HashMap<>(); for(int i = 0; i < A.length; i++) { for(int j = 0; j < A[0].length; j++) { if(A[i][j] != 0) { mapA.putIfAbsent(i, new HashMap<Integer, Integer>()); mapA.get(i).put(j, A[i][j]); } } } for(int i = 0; i < B.length; i++) { for(int j = 0; j < B[0].length; j++) { if(B[i][j] != 0) { mapB.putIfAbsent(i, new HashMap<Integer, Integer>()); mapB.get(i).put(j, B[i][j]); } } } int[][] AB = new int[A.length][B[0].length]; for(int i : mapA.keySet()) { for(int j : mapA.get(i).keySet()) { if(mapB.containsKey(j)) { for(int k : mapB.get(j).keySet()) { AB[i][k] += mapA.get(i).get(j) * mapB.get(j).get(k); } } } } return AB; } }
311. Sparse Matrix Multiplication - Medium