CC++實現區塊鏈(下)之區塊鏈實現
看了上面的演算法,相信大家基本可以猜到,相對於比特幣的限量的性質,對於本演算法來說,難解程度的根本原因即為向量環路的迭代次數。迭代次數越多,則演算法越難解,從而導致解題需要花費更多的時候,再基於這點,在數學上,當解題次數足夠大時,效率會無限小,從而導致瞭解題時間無限長最後導致加密貨幣的發放無限小。
創世區塊建立(部分大媽在前面有實現,而區塊這一部分將會詳細解答)
void Make_First_Block()
{
Getpublickey();
blo.data = circle;
blo.pre_hash = 0;
blo.this_hash = (blo.pre_hash+public_Key) * (a+b);
Block.push_back(blo);
}
由於在區塊鏈中,本區快的數字簽名是基於上一區塊的數字簽名和區塊本身的DATA決定, 所以,在這裡我們採用了上一區塊的數字簽名加上難解的PublicKey乘上長軸和短軸的和實現本區塊的數字簽名的演算法。
新增區塊(噹噹前區塊被算出時,新增新區塊,檢查簽名正確性。)
void Append_Block()
{
pre_blo = blo;
bool flag = true;
auto temp = public_Key;
circle = circle + 1;
Getpublickey();
blo.data = circle;
blo.pre_hash = blo.this_hash;
blo.this_hash = (blo.pre_hash + public_Key) * (a + b);
for(list::iterator itor = Block.begin(); itor != Block.end(); itor++)
{
if ((*itor).this_hash != (*itor).pre_hash + temp * (a + b))
{
flag = false;
break;
}
}
if (flag) { Block.push_back(blo); };
}
這個迭代其實可以不用的,因為我在外部還定義了一個block型別的全域性變數Pre_block和blo。Pre_block儲存了上一個區塊的資訊。而本區塊的資訊則儲存在Blo中。只有當用戶解出當前區塊後,才可以得到新區塊。而data引數,為了方便僅儲存了當前區塊所在的位置。
區塊的計算(用類實現)
class Get_Block :Create_Block {
public:
int diffcult;
int number = 1;
Get_Block():Create_Block(“OK”){
}
void calc()
{
double start = clock();
while (true){
for (unsigned long long z = 1; z < ULLONG_MAX; z++){
for (unsigned long long j = 1; j < 65535; j = j + 1) {
for (unsigned long long i = 1; i < 65535; i = i + 1) {
Cryptography *person = new Cryptography(i,j,z);
person->Getpublickey();
block bloc;
bloc.data = circle;
bloc.pre_hash = pre_blo.this_hash;
bloc.this_hash = (blo.pre_hash + person->public_Key) * (i + j);
if (blo.data == bloc.data &&blo.pre_hash== bloc.pre_hash && blo.this_hash == bloc.this_hash)
{
double end = clock();
cout << “歷時”<<end-start<<“毫秒獲得的第” << number++ <<“個區塊資訊為:” << endl;
cout << “data:” << bloc.data << endl;
cout << “this_hash:” << bloc.this_hash << endl;
cout << “pre_hash:” << bloc.pre_hash << endl << “=======================” << endl << endl;
this->Append_Block();
start = clock();
}
delete []person;
}
}
}
}
}
};
完整程式碼:
#include
#include <stdio.h>
#include <windows.h>
#include
#include
#include
#include
#include <time.h>
using namespace std;
struct Moving_Point {
unsigned long long x;
unsigned long long y;
};
int circle = 1;
class Martix {
public:
static const int circle_s = 1; //假定向量環路為1;
static const int KEY =Martix::circle_s * 8;
private:
unsigned long long martix_4_2[Martix::KEY / 2][2]; //儲存向量矩陣
unsigned long long martix_8_8[Martix::KEY][Martix::KEY]; //儲存由向量矩陣得到的轉置矩陣
unsigned long long martix_complete[KEY * 2]; //儲存操作完成後的矩陣(一維)
public:
Martix(string a) {};
Martix(int a, int b,int circle)
{
int key = 8;
int cir = circle;
while (cir–)
{
martix_4_2[key / 2 - 4][0] = (-1)*b; martix_4_2[key / 2 - 4][1] = (-1)*a;
martix_4_2[key / 2 - 3][0] = b; martix_4_2[key / 2 - 3][1] = (-1)*a;
martix_4_2[key / 2 - 2][0] = b; martix_4_2[key / 2 - 2][1] = a;
martix_4_2[key / 2 - 1][0] = (-1)*b; martix_4_2[key / 2 - 1][1] = a;
key += 8;
}
}
void Change_New_Martix() {
for (int i = 0; i < 2; i++)
{
for (int j = 0; j < 2; j++)
{
martix_8_8[i][j] = 0;
}
}
for (int j = 2; j < KEY / 2 + 2; j++) {
martix_8_8[0][j] = martix_4_2[j - 2][0] * (-1);
martix_8_8[1][j] = martix_4_2[j - 2][1] * (-1);
}
for (int i = 2; i < KEY / 2 + 2; i++) {
martix_8_8[i][0] = martix_4_2[i - 2][0] * (-1);
martix_8_8[i][1] = martix_4_2[i - 2][1] * (-1);
}
for (int i = 2; i < KEY / 2 + 2; i++)
{
for (int j = 2; j < KEY / 2 + 2; j++)
{
martix_8_8[i][j] = 0;
}
}
}
public:
void Save_Martix()
{
int key = 0;
for (int i = 0; i < KEY / 2 + 2; i++)
{
for (int j = 0; j < KEY / 2 + 2; j++)
{
if (martix_8_8[i][j] != 0)
{
martix_complete[key++] = martix_8_8[i][j];
}
}
}
}
unsigned long long GetPublicKey()
{
unsigned long long public_key = martix_complete[0];
for (int i = 1; i < KEY * 2; i++)
{
if (i % 2 == 0)
{
public_key = public_key + martix_complete[i];
}
else {
public_key = public_key * martix_complete[i];
}
}
return public_key;
}
};
class Cryptography :Martix
{
public:
/作為私鑰,傳送方儲存內容
unsigned long long a; //橢圓長軸的半軸長度
unsigned long long b; //橢圓短軸的半軸長度
/作為公鑰,接收方接受公鑰/
unsigned long long public_Key; //通過橢圓矩陣演算法得到的公鑰G
Moving_Point p; //隨機選定的在橢圓上的點
public:
Cryptography(string a) :Martix(“OK”) {};
Cryptography(unsigned long long in_a, unsigned long long in_b,int diffcult) :Martix(in_a, in_b,diffcult)
{
this->a = in_a;
this->b = in_b;
p.x = 0;
p.y = 0;
public_Key = Getpublickey();
}
unsigned long long Getpublickey()
{
Get_Public_Key();
return public_Key;
}
Moving_Point GetPoint()
{
Get_Point();
return p;
}
public:
void PrintPrivateKey() {
cout << “#############私鑰:#############” << endl;
cout << “長軸:” << 2this->a << “\t\t”;
cout << “短軸:” << 2this->b << endl;
}
private:
void Get_Point()
{
if (p.x == 0 && p.y == 0)
{
while (!Is_Moving_Point())
{
Get_Moving_Point_P();
}
}
}
void Get_Public_Key()
{
this->Change_New_Martix();
this->Save_Martix();
this->public_Key = this->GetPublicKey();
}
void Get_Moving_Point_P() //得到一個隨機的在橢圓上的點的座標
{
for (int i = 0; i < this->a; i++)
{
for (int j = 0; j < this->b; j++)
{
p.x = i;
p.y = j;
}
}
}
bool Is_Moving_Point() {
if (pow(b, 2)*pow(p.y, 2) + pow(a, 2)*pow(p.x, 2) == pow(a, 2)*pow(b, 2) && p.y <= a && p.x <= b)
return true;
else
return false;
}
};
struct block {
unsigned long long this_hash;
unsigned long long pre_hash;
unsigned long long data;
};
block blo;
block pre_blo = {0,0,0};
class Create_Block:public Cryptography {
public:
list Block;
public:
Create_Block(string a):Cryptography(“OK”) {};
Create_Block(int x = rand()*2, int y = rand(), int diffcult = 1):Cryptography(x,y,diffcult){
}
void Make_First_Block()
{
Getpublickey();
blo.data = circle;
blo.pre_hash = 0;
blo.this_hash = (blo.pre_hash+public_Key) * (a+b);
Block.push_back(blo);
}
void Append_Block()
{
pre_blo = blo;
bool flag = true;
auto temp = public_Key;
circle = circle + 1;
Getpublickey();
blo.data = circle;
blo.pre_hash = blo.this_hash;
blo.this_hash = (blo.pre_hash + public_Key) * (a + b);
for(list::iterator itor = Block.begin(); itor != Block.end(); itor++)
{
if ((*itor).this_hash != (*itor).pre_hash + temp * (a + b))
{
flag = false;
break;
}
}
if (flag) { Block.push_back(blo); };
}
};
class Get_Block :Create_Block {
public:
int diffcult;
int number = 1;
Get_Block():Create_Block(“OK”){
}
void calc()
{
double start = clock();
while (true){
for (unsigned long long z = 1; z < ULLONG_MAX; z++){
for (unsigned long long j = 1; j < 65535; j = j + 1) {
for (unsigned long long i = 1; i < 65535; i = i + 1) {
Cryptography *person = new Cryptography(i,j,z);
person->Getpublickey();
block bloc;
bloc.data = circle;
bloc.pre_hash = pre_blo.this_hash;
bloc.this_hash = (blo.pre_hash + person->public_Key) * (i + j);
if (blo.data == bloc.data &&blo.pre_hash== bloc.pre_hash && blo.this_hash == bloc.this_hash)
{
double end = clock();
cout << “歷時”<<end-start<<“毫秒獲得的第” << number++ <<“個區塊資訊為:” << endl;
cout << “data:” << bloc.data << endl;
cout << “this_hash:” << bloc.this_hash << endl;
cout << “pre_hash:” << bloc.pre_hash << endl << “=======================” << endl << endl;
this->Append_Block();
start = clock();
}
delete []person;
}
}
}
}
}
};
int main()
{
Create_Block * one = new Create_Block();
one->Make_First_Block();
Get_Block* two = new Get_Block();
two->calc();
return 0;
}
不得不說第一個區塊的挖掘永遠是最快的。第二個區塊確實要等好久才可以得出。以上即為C/C++實現區塊鏈的全部原始碼。僅用於學習交流,不得用於商業用途,轉載必究。
作者:程式小黑
來源:CSDN
原文:https://blog.csdn.net/qq_27180763/article/details/82588305
版權宣告:本文為博主原創文章,轉載請附上博文連結!