1. 程式人生 > >Luogu P3768 簡單的數學題

Luogu P3768 簡單的數學題

非常噁心的一道數學題,推式子推到吐血。

光是\(\gcd\)求和我還是會的,但是多了個\(ij\)是什麼鬼東西。

\[\sum_{i=1}^n\sum_{j=1}^nij\gcd(i,j)=\sum_{d=1}^nd\sum_{i=1}^n\sum_{j=1}^nij[\gcd(i,j)=d]\]

很套路的把後面的\(d\)提出來:

\[\sum_{d=1}^nd\sum_{i=1}^n\sum_{j=1}^nij[\gcd(i,j)=d]=\sum_{d=1}^nd^3\sum_{i=1}^{\lfloor\frac{n}{d} \rfloor}\sum_{j=1}^{\lfloor\frac{n}{d} \rfloor} ij[\gcd(i,j)=1]\]

利用\(\sum_{d|n}\mu(d)=[n=1]\)替換掉\([\gcd(i,j)=1]\)就有:

\[\sum_{d=1}^nd^3\sum_{i=1}^{\lfloor\frac{n}{d} \rfloor}\sum_{j=1}^{\lfloor\frac{n}{d} \rfloor} ij[\gcd(i,j)=1]=\sum_{d=1}^nd^3\sum_{i=1}^{\lfloor\frac{n}{d} \rfloor}\sum_{j=1}^{\lfloor\frac{n}{d} \rfloor} ij\sum_{x|\gcd(i,j)}\mu(x)\]

然後第一個難點來了,我們把\(x\)

弄到前面去列舉,然後利用和式的變換,列舉\(i,j\)\(x\)的多少倍,然後用分配率湊在一起就有:

\[\sum_{d=1}^nd^3\sum_{i=1}^{\lfloor\frac{n}{d} \rfloor}\sum_{j=1}^{\lfloor\frac{n}{d} \rfloor} ij\sum_{x|\gcd(i,j)}\mu(x)=\sum_{d=1}^nd^3\sum_{x=1}^{\lfloor\frac{n}{d} \rfloor}\mu(x) (\sum_{i=1}^{\lfloor\frac{n}{dx} \rfloor})^2x^2\]

PS:如果上面理解了那麼下面就不難了,我們設\(T=dx\)

帶進去就有:

\[\sum_{d=1}^nd^3\sum_{x=1}^{\lfloor\frac{n}{d} \rfloor}\mu(x) (\sum_{i=1}^{\lfloor\frac{n}{dx} \rfloor})^2x^2=\sum_{T=1}^n(\sum_{i=1}^{\lfloor\frac{n}{T} \rfloor}i)^2\sum_{d|T}d^3\mu(\frac{T}{d})(\frac{T}{d})^2\]

後面那個東西可以直接提出來就得到:

\[\sum_{T=1}^n(\sum_{i=1}^{\lfloor\frac{n}{T} \rfloor}i)^2\sum_{d|T}d^3\mu(\frac{T}{d})(\frac{T}{d})^2=\sum_{T=1}^n(\sum_{i=1}^{\lfloor\frac{n}{T} \rfloor}i)^2\sum_{d|T}dT^2\mu(\frac{T}{d})\]

\(T^2\)提到前面去:

\[\sum_{T=1}^n(\sum_{i=1}^{\lfloor\frac{n}{T} \rfloor}i)^2\sum_{d|T}dT^2\mu(\frac{T}{d})=\sum_{T=1}^n(\sum_{i=1}^{\lfloor\frac{n}{T} \rfloor}i)^2T^2\sum_{d|T}d\mu(\frac{T}{d})\]

後面那個\(\sum_{d|T}d\mu(\frac{T}{d})\)顯然就是狄利克雷卷積的形式啊,這就等於\((id\ast\mu)(T)\)

然後回憶一下,\((id\ast\mu)(T)\)不就是\(\phi\)麼,因此帶進去就有:

\[\sum_{T=1}^n(\sum_{i=1}^{\lfloor\frac{n}{T} \rfloor}i)^2T^2\sum_{d|T}d\mu(\frac{T}{d})=\sum_{T=1}^n(\sum_{i=1}^{\lfloor\frac{n}{T} \rfloor}i)^2T^2\phi(T)\]

\(\sum_{i=1}^{\lfloor\frac{n}{T} \rfloor}i\)等差數列求和的公式展開就變成:

\[\sum_{T=1}^n(\sum_{i=1}^{\lfloor\frac{n}{T} \rfloor}i)^2T^2\phi(T)=\sum_{T=1}^n(\frac{(1+\lfloor\frac{n}{T} \rfloor)\cdot\lfloor\frac{n}{T} \rfloor}{2})^2T^2\phi(T)\]

如果我們隊\(\lfloor\frac{n}{T}\rfloor\)除法分塊,那麼現在要求的就是\(T^2\phi(T)\)的字首和了

考慮用杜教篩的方法化式子,我們社\(f(i)=i^2\phi(i)\),這個時候我們要找一個\(g\)\(f\)捲起來可以方便求。

由於\(i^2\)很煩,我們考慮先把它消去。令\(g(i)=i^2\),則有:

\(h(n)=(f\ast g)(n)=\sum_{d|n} d^2\phi(d)(\frac{n}{d})^2=n^2\ast(\phi\ast \epsilon)(n)=n^3\)

所以用杜教篩的套路式就是\(g(1)f(n)=h(n)-\sum_{d=2}^ng(d)f(\lfloor\frac{n}{d}\rfloor)\)

\(f(n)=\sum_{i=1}^ni^3-\sum_{d=2}^ng(d)f(\lfloor\frac{n}{d}\rfloor)\),我們知道\(\sum_{i=1}^ni^3=(\frac{n(n+1)}{2})^2,\sum_{i=1}^ni^2=\frac{n(n+1)(2n+1)}{6}\),所以都可以\(O(1)\)求啦。

CODE

#include<cstdio>
#include<map>
#define RI register int
#define RL register LL
using namespace std;
typedef long long LL;
const int P=10000000;
map <LL,int> sum_f; LL n; int prime[P+5],phi[P+5],cnt,f[P+5],mod,inv2,inv6,ans; bool vis[P+5];
inline void inc(int &x,int y)
{
    if ((x+=y)>=mod) x-=mod;
}
inline void dec(int &x,int y)
{
    if ((x-=y)<0) x+=mod;
}
inline int quick_pow(int x,int p,int mul=1)
{
    for (;p;p>>=1,x=1LL*x*x%mod) if (p&1) mul=1LL*mul*x%mod; return mul;
}
inline int sum(int x)
{
    return 1LL*x*(x+1)%mod*inv2%mod;
}
inline int sqr(int l,int r)
{
    int t=1LL*r*(r+1)%mod*((r<<1LL)+1)%mod*inv6%mod;
    dec(t,1LL*l*(l-1)%mod*((l<<1LL)-1)%mod*inv6%mod); return t;
}
#define Pi prime[j]
inline void Euler(void)
{
    vis[1]=phi[1]=1; RI i,j; for (i=2;i<=P;++i)
    {
        if (!vis[i]) prime[++cnt]=i,phi[i]=i-1;
        for (j=1;j<=cnt&&i*Pi<=P;++j)
        {
            vis[i*Pi]=1; if (i%Pi) phi[i*Pi]=phi[i]*(Pi-1);
            else { phi[i*Pi]=phi[i]*Pi; break; }
        }
    }
    for (i=1;i<=P;++i) f[i]=f[i-1],inc(f[i],1LL*phi[i]*i%mod*i%mod);
}
#undef Pi
inline int F(LL x)
{
    if (x<=P) return f[x]; if (sum_f.count(x)) return sum_f[x];
    int ans=sum(x%mod); ans=1LL*ans*ans%mod; for (RL l=2,r;l<=x;l=r+1)
    {
        r=x/(x/l);
        int t=sqr(l%mod,r%mod);
        dec(ans,1LL*t*F(x/l)%mod);
    }
    return sum_f[x]=ans;
}
int main()
{
    //freopen("CODE.in","r",stdin); freopen("CODE.out","w",stdout);
    scanf("%d%lld",&mod,&n); Euler(); inv2=quick_pow(2,mod-2);
    inv6=quick_pow(6,mod-2); for (RL l=1,r;l<=n;l=r+1)
    {
        r=n/(n/l); int t=sum(n/l%mod); t=1LL*t*t%mod;
        int Fs=F(r); dec(Fs,F(l-1)); inc(ans,1LL*t*Fs%mod);
    }
    return printf("%d",ans),0;
}