BZOJ4310: 跳蚤 【字尾陣列+二分】
阿新 • • 發佈:2018-12-05
Description
很久很久以前,森林裡住著一群跳蚤。一天,跳蚤國王得到了一個神祕的字串,它想進行研究。首先,他會把串
分成不超過 k 個子串,然後對於每個子串 S,他會從S的所有子串中選擇字典序最大的那一個,並在選出來的k個子串中選擇字典序最大的那一個。他稱其為“魔力串”。現在他想找一個最優的分法讓“魔力串”字典序最小。
Input
第一行一個整數 k,K<=15
接下來一個長度不超過 10^5 的字串 S。
Output
輸出一行,表示字典序最小的“魔力串”。
Sample Input
2
ababa
Sample Output
ba
//解釋:
分成aba和ba兩個串,其中字典序最大的子串為ba
思路
首先我們要讓所有段的最大子串的最大串最小,然後就可以考慮用二分,因為有一大堆子串的操作
不難想到字尾陣列
然後就可以考慮怎麼check
我們從後向前貪心
每次因為只需要向前擴充套件一個位置,所以每次只用檢查一個子串是不是大於當前二分出的串
然後就可以很方便地做出來了
height處理的時候老是要寫錯
然後求lcp的時候注意把左區間的指標右移,並且要特判兩個串的起始位置相等的情況
然後是貪心的時候每一段最後一個字元一定要特判
#include<bits/stdc++.h> using namespace std; typedef pair<int, int> pi; typedef long long ll; const int N = 1e5 + 10; const int LOG = 20; struct Suffix_Array { int s[N], n, m; int c[N], x[N], y[N]; int height[N], sa[N], rank[N]; int st[N][LOG], Log[N]; ll rank_pre[N]; void init(int len, char *c) { n = len, m = 0; for (int i = 1; i <= len; i++) { s[i] = c[i]; m = max(m, s[i]); } } void radix_sort() { for (int i = 1; i <= m; i++) c[i] = 0; for (int i = 1; i <= n; i++) c[x[y[i]]]++; for (int i = 1; i <= m; i++) c[i] += c[i - 1]; for (int i = n; i >= 1; i--) sa[c[x[y[i]]]--] = y[i]; } void buildsa() { for (int i = 1; i <= n; i++) x[i] = s[i], y[i] = i; radix_sort(); int now; for (int k = 1; k <= n; k <<= 1) { now = 0; for (int i = n - k + 1; i <= n; i++) y[++now] = i; for (int i = 1; i <= n; i++) if (sa[i] > k) y[++now] = sa[i] - k; radix_sort(); y[sa[1]] = now = 1; for (int i = 2; i <= n; i++) y[sa[i]] = (x[sa[i]] == x[sa[i - 1]] && x[sa[i] + k] == x[sa[i - 1] + k]) ? now : ++now; swap(x, y); if (now == n) break; m = now; } } void buildrank() { for (int i = 1; i <= n; i++) rank[sa[i]] = i; } void buildrank_pre() { for (int i = 1; i <= n; i++) rank_pre[i] = rank_pre[i - 1] + n - sa[i] + 1 - height[i]; } void buildheight() { for (int i = 1; i <= n; i++) if (rank[i] != 1) { int k = max(height[rank[i - 1]] - 1, 0); // 裡面是 rank[i - 1] for (; s[i + k] == s[sa[rank[i] - 1] + k]; k++); height[rank[i]] = k; // height 裡面是 rank } } void buildst() { Log[1] = 0; for (int i = 2; i < N; i++) Log[i] = Log[i >> 1] + 1; for (int i = 1; i <= n; i++) st[i][0] = height[i]; for (int j = 1; j < LOG; j++) { for (int i = 1; i + (1 << (j - 1)) <= n; i++) { st[i][j] = min(st[i][j - 1], st[i + (1 << (j - 1))][j - 1]); } } } int queryst(int l, int r) { if (l > r) swap(l, r); ++l; //*** int k = Log[r - l + 1]; return min(st[l][k], st[r - (1 << k) + 1][k]); } int querylcp(int la, int ra, int lb, int rb) { if (rank[la] == rank[lb]) return min(ra - la + 1, rb - lb + 1); return min(min(ra - la + 1, rb - lb + 1), queryst(rank[la], rank[lb])); } //return substringa <= substringb bool cmpsubstring(int la, int ra, int lb, int rb) { int lcp = querylcp(la, ra, lb, rb); if (ra - la + 1 == lcp) return 1; if (rb - lb + 1 == lcp) return 0; return s[la + lcp] < s[lb + lcp]; } pi findkth(ll k) { int pos = lower_bound(rank_pre + 1, rank_pre + n + 1, k) - rank_pre; return pi(sa[pos], sa[pos] + height[pos] + k - rank_pre[pos - 1] - 1); } } Sa; int k, len; char c[N]; bool check(pi cur) { int last = len, tot = 0; for (int i = len; i >= 1; i--) { if (!Sa.cmpsubstring(i, last, cur.first, cur.second)) { if (++tot > k) return 0; last = i; if (!Sa.cmpsubstring(i, last, cur.first, cur.second)) return 0; } } return ++tot <= k; } int main() { #ifdef dream_maker freopen("input.txt", "r", stdin); #endif scanf("%d", &k); scanf("%s", c + 1); len = strlen(c + 1); Sa.init(len, c); Sa.buildsa(); Sa.buildrank(); Sa.buildheight(); Sa.buildrank_pre(); Sa.buildst(); ll l = 1, r = Sa.rank_pre[len]; pi ans(1, 1); while (l <= r) { ll mid = (l + r) >> 1; pi cur = Sa.findkth(mid); if (check(cur)) { ans = cur, r = mid - 1; } else l = mid + 1; } for (int i = ans.first; i <= ans.second; i++) putchar(c[i]); return 0; }