BZOJ1927: [Sdoi2010]星際競速(最小費用最大流 最小路徑覆蓋)
阿新 • • 發佈:2018-12-06
題意
Sol
看完題不難想到最小路徑覆蓋,但是帶權的咋做啊?qwqqq
首先冷靜思考一下:最小路徑覆蓋 = \(n - \text{二分圖最大匹配數}\)
為什麼呢?首先最壞情況下是用\(n\)條路徑去覆蓋(就是\(n\)個點),根據二分圖的性質,每個點只能有一個和他配對,這樣就保證了,每多出一個匹配,路徑數就會\(-1\)
擴充套件到有邊權的圖也是同理的,\(i\)表示二分圖左側的點,\(i'\)表示二分圖右側的點,對於兩點\(u, v\),從\(u\)向\(v'\)連\((1, w_i)\)的邊(前面是流量,後面是費用)
接下來從\(S\)向\(i\)連\((1, 0)\)
跑最小費用最大流即可
#include<bits/stdc++.h> #define chmin(x, y) (x = x < y ? x : y) #define chmax(x, y) (x = x > y ? x : y) using namespace std; const int MAXN = 1e6 + 10, INF = 1e9 + 10; inline int read() { char c = getchar(); int x = 0, f = 1; while(c < '0' || c > '9') {if(c == '-') f = -1; c = getchar();} while(c >= '0' && c <= '9') x = x * 10 + c - '0', c = getchar(); return x * f; } int N, M, S, T, dis[MAXN], vis[MAXN], Pre[MAXN], ansflow, anscost, A[MAXN]; struct Edge { int u, v, f, w, nxt; }E[MAXN]; int head[MAXN], num = 0; inline void add_edge(int x, int y, int f, int w) { E[num] = (Edge) {x, y, f, w, head[x]}; head[x] = num++; } inline void AddEdge(int x, int y, int f, int w) { add_edge(x, y, f, w); add_edge(y, x, 0, -w); } bool SPFA() { queue<int> q; q.push(S); memset(dis, 0x3f, sizeof(dis)); memset(vis, 0, sizeof(vis)); dis[S] = 0; while(!q.empty()) { int p = q.front(); q.pop(); vis[p] = 0; for(int i = head[p]; ~i; i = E[i].nxt) { int to = E[i].v; if(E[i].f && dis[to] > dis[p] + E[i].w) { dis[to] = dis[p] + E[i].w; Pre[to] = i; if(!vis[to]) vis[to] = 1, q.push(to); } } } return dis[T] <= INF; } void F() { int canflow = INF; for(int i = T; i != S; i = E[Pre[i]].u) chmin(canflow, E[Pre[i]].f); for(int i = T; i != S; i = E[Pre[i]].u) E[Pre[i]].f -= canflow, E[Pre[i] ^ 1].f += canflow; anscost += canflow * dis[T]; } void MCMF() { while(SPFA()) F(); } int main() { memset(head, -1, sizeof(head)); N = read(); M = read(); S = N * 2 + 2, T = N * 2 + 3; for(int i = 1; i <= N; i++) A[i] =read(), AddEdge(S, i, 1, 0), AddEdge(i + N, T, 1, 0), AddEdge(S, i + N, 1, A[i]); for(int i = 1; i <= M; i++) { int x = read(), y = read(), v = read(); if(x > y) swap(x, y); AddEdge(x, y + N, 1, v); } MCMF(); printf("%d\n", anscost); return 0; }