HDU-1757 A Simple Math Problem(矩陣快速冪)
題目
A Simple Math Problem
Time Limit: 3000/1000 MS (Java/Others) Memory Limit: 32768/32768 K (Java/Others) Total Submission(s): 6512 Accepted Submission(s): 3996
Problem Description
Lele now is thinking about a simple function f(x). If x < 10 f(x) = x. If x >= 10 f(x) = a0 * f(x-1) + a1 * f(x-2) + a2 * f(x-3) + …… + a9 * f(x-10); And ai(0<=i<=9) can only be 0 or 1 . Now, I will give a0 ~ a9 and two positive integers k and m ,and could you help Lele to caculate f(k)%m.
Input
The problem contains mutiple test cases.Please process to the end of file. In each case, there will be two lines. In the first line , there are two positive integers k and m. ( k<2*10^9 , m < 10^5 ) In the second line , there are ten integers represent a0 ~ a9.
Output
For each case, output f(k) % m in one line.
Sample Input
10 9999 1 1 1 1 1 1 1 1 1 1 20 500 1 0 1 0 1 0 1 0 1 0
Sample Output
45 104
題目連結:戳這裡
思路
k的值比較大,所以遞推是不行的。
那麼就考慮矩陣快速冪。
根據 公式構造矩陣,然後直接模板就ok了。
程式碼
#include<cstdio> using namespace std; const int maxn = 10; int k,MOD; #define mod(x) ((x)%MOD) struct Matrix{ int a[maxn][maxn]; void init(){ for(int i=0;i < maxn;i++){ for(int j=0;j < maxn;j++){ a[i][j] = 0; } } } }; Matrix mul(Matrix A,Matrix B){ Matrix res; res.init(); for(int i=0;i < maxn;i++){ for(int j=0;j < maxn;j++){ for(int k=0;k < maxn;k++){ res.a[i][j] = mod(res.a[i][j] + mod(A.a[i][k]*B.a[k][j])); } } } return res; } Matrix poww(Matrix A,Matrix B,int n){ Matrix res = B; while(n){ if(n&1)res = mul(res,A); A = mul(A,A); n >>= 1; } return res; } void outPut(Matrix A){ for(int i=0;i < maxn;i++){ for(int j=0;j < maxn;j++){ printf("%d ",A.a[i][j]); } printf("\n"); } } int main(){ while(~scanf("%d%d",&k,&MOD)){ Matrix A,B; A.init(); B.init(); for(int i=9;i >= 0;i--){ A.a[0][9-i] = i; } for(int i=0;i <= 9;i++){ scanf("%d",&B.a[i][0]); } for(int i=0;i < 9;i++){ B.a[i][i+1] = 1; } A = poww(B,A,k-9); printf("%d\n",A.a[0][0]); } return 0; }