2016大連區域賽 現場賽 D—A Simple Math Problem【LCM+數學方程】
阿新 • • 發佈:2018-12-13
A Simple Math Problem
Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 65536/65536 K (Java/Others) Total Submission(s): 729 Accepted Submission(s): 177
Problem Description
Given two positive integers a and b,find suitable X and Y to meet the conditions: X+Y=a Least Common Multiple (X, Y) =b
Input
Input includes multiple sets of test data.Each test data occupies one line,including two positive integers a(1≤a≤2*10^4),b(1≤b≤10^9),and their meanings are shown in the description.Contains most of the 12W test cases.
Output
For each set of input data,output a line of two integers,representing X, Y.If you cannot find such X and Y,output one line of "No Solution"(without quotation).
Sample Input
6 8
798 10780
Sample Output
No Solution
308 490
題意:給你兩個數a,b,讓你拆成x+y=a且lcm(x,y)=b。(x,y都是整數)
求x,y
分析:
令x=ck,y=dk,則b=cdk(k=gcd(x,y))
即可得
ck+dk=a
cdk=b
解方程。
隱含條件:輸出的時候小的在前,大的在後。
程式碼:
#include<bits/stdc++.h> #define ll long long #define inf 0x3f3f3f3f3f3f3f3fLL using namespace std; const int maxn=100010; const ll mo=1e9+7; ll a,b; ll gcd(ll x,ll y){return y==0?x:gcd(y,x%y);} int main() { while(scanf("%lld%lld",&a,&b)!=EOF) { ll k=gcd(a,b); ll dt=a*a-4*k*b; ll c=sqrt(dt); if(dt>=0&&c*c==dt) { ll tmp=(a+c)/(2*k); if((a+c)%(2*k)==0&&b%(tmp*k)==0) { ll cnt=b/(tmp*k); printf("%lld %lld\n",cnt*k,tmp*k); } else { tmp=(a-c)/(2*k); if((a-c)%(2*k)==0&&b%(tmp*k)==0) { ll cnt=b/(tmp*k); printf("%lld %lld\n",cnt*k,tmp*k); } else puts("No Solution"); } } else puts("No Solution"); } return 0; }