ROS Navigation Stack之dwa_local_planner原始碼分析
阿新 • • 發佈:2018-12-09
DWA和base_local_planner的關係
在base_local_planner包中有兩個檔案叫trajectory_planner.cpp 以及對應的ros實現,其和DWA是同一層的。
由於nav_core提供了統一的介面,因此我們可以先看看統一的介面有哪些,那我們便知道每一個演算法裡比較重要的函式有哪些。
nav_core包裡的base_local_planner.h檔案
//最為關鍵的地方,計算機器人下一刻的速度
virtual bool computeVelocityCommands(geometry_msgs::Twist& cmd_vel) = 0 ;
//判斷是否到達目標點
virtual bool isGoalReached() = 0;
//載入全域性路徑
virtual bool setPlan(const std::vector<geometry_msgs::PoseStamped>& plan) = 0;
//初始化
virtual void initialize(std::string name, tf::TransformListener* tf, costmap_2d::Costmap2DROS* costmap_ros) = 0;
下面我們就先看看base_local_planner的computeVelocityCommands的主要實現框架
bool TrajectoryPlannerROS::computeVelocityCommands(geometry_msgs::Twist& cmd_vel)
{
//檢查初始化、檢查是否已經到達目標點...略
transformGlobalPlan(*tf_, global_plan_, global_pose, *costmap_, global_frame_, transformed_plan);
//如果已經到達目標點,姿態還沒到
if (xy_tolerance_latch_ || (getGoalPositionDistance(global_pose, goal_x, goal_y) <= xy_goal_tolerance_))
{
tc_->updatePlan(transformed_plan);
//所以這個函式裡最關鍵的子函式是findBestPath
Trajectory path = tc_->findBestPath(global_pose, robot_vel, drive_cmds);
return true;
}
tc_->updatePlan(transformed_plan);
Trajectory path = tc_->findBestPath(global_pose, robot_vel, drive_cmds);
//然後又是轉換,然後就釋出出速度了...
}
接下來我們看一下TrajectoryPlanner的findBestPath的實現框架,Come on~
Trajectory TrajectoryPlanner::findBestPath(tf::Stamped<tf::Pose> global_pose, tf::Stamped<tf::Pose> global_vel,
tf::Stamped<tf::Pose>& drive_velocities)
{
//...
Trajectory best = createTrajectories(pos[0], pos[1], pos[2], vel[0], vel[1], vel[2],
acc_lim_x_, acc_lim_y_, acc_lim_theta_);
//...
}
順藤摸瓜,一睹createTrajectories的內部實現,這個函式是軌跡取樣演算法,可以說是一個非常關鍵的函式。
Trajectory TrajectoryPlanner::createTrajectories(double x, double y, double theta,
double vx, double vy, double vtheta,
double acc_x, double acc_y, double acc_theta)
{
//檢查最終點是否是有效的,判斷變數在updatePlan中被賦值
if( final_goal_position_valid_ )
{
double final_goal_dist = hypot( final_goal_x_ - x, final_goal_y_ - y );
max_vel_x = min( max_vel_x, final_goal_dist / sim_time_ );
}
//是否使用dwa演算法, sim_peroid_是1/controller_frequency_,暫時不清楚sim_period_和sim_time_的區別
if (dwa_)
{
max_vel_x = max(min(max_vel_x, vx + acc_x * sim_period_), min_vel_x_);
min_vel_x = max(min_vel_x_, vx - acc_x * sim_period_);
max_vel_theta = min(max_vel_th_, vtheta + acc_theta * sim_period_);
min_vel_theta = max(min_vel_th_, vtheta - acc_theta * sim_period_);
}
else
{
max_vel_x = max(min(max_vel_x, vx + acc_x * sim_time_), min_vel_x_);
min_vel_x = max(min_vel_x_, vx - acc_x * sim_time_);
max_vel_theta = min(max_vel_th_, vtheta + acc_theta * sim_time_);
min_vel_theta = max(min_vel_th_, vtheta - acc_theta * sim_time_);
}
//...先忽略其中的邏輯,只要知道按照不同的規則生成路徑,呼叫的子函式是generateTrajectory
}
這個子函式的作用就是生成路徑,並且評分
void TrajectoryPlanner::generateTrajectory
{
//主要有兩大作用:
//生成路徑和速度
vx_i = computeNewVelocity(vx_samp, vx_i, acc_x, dt);
vy_i = computeNewVelocity(vy_samp, vy_i, acc_y, dt);
vtheta_i = computeNewVelocity(vtheta_samp, vtheta_i, acc_theta, dt);
//計算位置
x_i = computeNewXPosition(x_i, vx_i, vy_i, theta_i, dt);
y_i = computeNewYPosition(y_i, vx_i, vy_i, theta_i, dt);
theta_i = computeNewThetaPosition(theta_i, vtheta_i, dt);
//對路徑進行評分
if (!heading_scoring_)
{
//
cost = pdist_scale_ * path_dist + goal_dist * gdist_scale_ + occdist_scale_ * occ_cost;
}
else
{
cost = occdist_scale_ * occ_cost + pdist_scale_ * path_dist + 0.3 * heading_diff + goal_dist * gdist_scale_;
}
//這裡的順序與原始碼不同,我覺得總分來看更有組織性
//該軌跡與全域性路徑的相對距離
path_dist = path_map_(cell_x, cell_y).target_dist;
//距離目標點距離
goal_dist = goal_map_(cell_x, cell_y).target_dist;
//離障礙物距離
double footprint_cost = footprintCost(x_i, y_i, theta_i);
occ_cost = std::max(std::max(occ_cost, footprint_cost), double(costmap_.getCost(cell_x, cell_y)));
}
綜上所述,其整一個邏輯順序就是computeVelocityCommands->findBestTrajectory –> createTrajectories –> generateTrajectory
最終,選擇分數最低的軌跡,釋出出去。這便是整個區域性規劃器的實現思路和邏輯。下一篇,談談DWA。