tf.summary用法
1、tf.summary.scalar
用來顯示標量資訊,其格式為:
tf.summary.scalar(name, tensor, collections=None)
- 1
例如:tf.summary.scalar('mean', mean)
一般在畫loss,accuary時會用到這個函式。
2、tf.summary.histogram
用來顯示直方圖資訊,其格式為:
tf.summary.histogram(tags, values, collections=None, name=None)
- 1
例如: tf.summary.histogram('histogram', var)
3、tf.summary.distribution 分佈圖,一般用於顯示weights分佈
4、tf.summary.text 可以將文字型別的資料轉換為tensor寫入summary中:
例如:
text = """/a/b/c\\_d/f\\_g\\_h\\_2017"""
summary_op0 = tf.summary.text('text', tf.convert_to_tensor(text))
- 1
- 2
5、tf.summary.image
輸出帶影象的probuf,彙總資料的影象的的形式如下: ’ tag /image/0’, ’ tag /image/1’…,如:input/image/0等。
格式:tf.summary.image(name, tensor, max_outputs=3, collections=None)
6、tf.summary.audio
展示訓練過程中記錄的音訊
7、tf.summary.merge_all
merge_all 可以將所有summary全部儲存到磁碟,以便tensorboard顯示。如果沒有特殊要求,一般用這一句就可一顯示訓練時的各種資訊了。
格式:tf.summaries.merge_all(key='summaries')
8、tf.summary.FileWriter
指定一個檔案用來儲存圖。
格式:tf.summary.FileWritter(path,sess.graph)
可以呼叫其add_summary()方法將訓練過程資料儲存在filewriter指定的檔案中
Tensorflow Summary 用法示例:
tf.summary.scalar('accuracy',acc) #生成準確率標量圖
merge_summary = tf.summary.merge_all()
train_writer = tf.summary.FileWriter(dir,sess.graph)#定義一個寫入summary的目標檔案,dir為寫入檔案地址
......(交叉熵、優化器等定義)
for step in xrange(training_step): #訓練迴圈
train_summary = sess.run(merge_summary,feed_dict = {...})#呼叫sess.run執行圖,生成一步的訓練過程資料
train_writer.add_summary(train_summary,step)#呼叫train_writer的add_summary方法將訓練過程以及訓練步數儲存
- 1
- 2
- 3
- 4
- 5
- 6
- 7
此時開啟tensorborad:
tensorboard –logdir=/summary_dir 便能看見accuracy曲線了。
另外,如果我不想儲存所有定義的summary資訊,也可以用tf.summary.merge方法有選擇性地儲存資訊
9、tf.summary.merge
格式:tf.summary.merge(inputs, collections=None, name=None)
一般選擇要儲存的資訊還需要用到tf.get_collection()函式
示例:
tf.summary.scalar('accuracy',acc) #生成準確率標量圖
merge_summary = tf.summary.merge([tf.get_collection(tf.GraphKeys.SUMMARIES,'accuracy'),...(其他要顯示的資訊)])
train_writer = tf.summary.FileWriter(dir,sess.graph)#定義一個寫入summary的目標檔案,dir為寫入檔案地址
......(交叉熵、優化器等定義)
for step in xrange(training_step): #訓練迴圈
train_summary = sess.run(merge_summary,feed_dict = {...})#呼叫sess.run執行圖,生成一步的訓練過程資料
train_writer.add_summary(train_summary,step)#呼叫train_writer的add_summary方法將訓練過程以及訓練步數儲存
- 1
- 2
- 3
- 4
- 5
- 6
- 7
使用tf.get_collection函式篩選圖中summary資訊中的accuracy資訊,這裡的
tf.GraphKeys.SUMMARIES 是summary在collection中的標誌。
當然,也可以直接:
acc_summary = tf.summary.scalar('accuracy',acc) #生成準確率標量圖
merge_summary = tf.summary.merge([acc_summary ,...(其他要顯示的資訊)]) #這裡的[]不可省
- 1
- 2
當然也會有API版本的問題: 1、AttributeError: ‘module’ object has no attribute ‘SummaryWriter’
tf.train.SummaryWriter 改為:tf.summary.FileWriter
- 1
2、AttributeError: module ‘tensorflow’ has no attribute ‘merge_all_summaries’
tf.merge_all_summaries()改為:summary_op = tf.summary.merge_all()
- 1
3、AttributeError: ‘module’ object has no attribute ‘histogram_summary’
tf.histogram_summary(var.op.name, var) 改為: tf.summary.histogram()
- 1
4、AttributeError: ‘module’ object has no attribute ‘scalar_summary’
tf.scalar_summary('images', images)改為:tf.summary.scalar('images', images)
- 1
5、AttributeError: module ‘tensorflow’ has no attribute ‘image_summary’
tf.image_summary('images', images)改為:tf.summary.image('images', images)