1. 程式人生 > >hadoop中map和reduce的數量設定問題

hadoop中map和reduce的數量設定問題

map和reduce是hadoop的核心功能,hadoop正是通過多個map和reduce的並行執行來實現任務的分散式平行計算,從這個觀點來看,如果將map和reduce的數量設定為1,那麼使用者的任務就沒有並行執行,但是map和reduce的數量也不能過多,數量過多雖然可以提高任務並行度,但是太多的map和reduce也會導致整個hadoop框架因為過度的系統資源開銷而使任務失敗。所以使用者在提交map/reduce作業時應該在一個合理的範圍內,這樣既可以增強系統負載勻衡,也可以降低任務失敗的開銷。

1 map的數量

map的數量通常是由hadoop叢集的DFS塊大小確定的,也就是輸入檔案的總塊數,正常的map數量的並行規模大致是每一個Node是10~100個,對於CPU消耗較小的作業可以設定Map數量為300個左右,但是由於hadoop的沒一個任務在初始化時需要一定的時間,因此比較合理的情況是每個map執行的時間至少超過1分鐘。具體的資料分片是這樣的,InputFormat在預設情況下會根據hadoop叢集的DFS塊大小進行分片,每一個分片會由一個map任務來進行處理,當然使用者還是可以通過引數mapred.min.split.size引數在作業提交客戶端進行自定義設定。還有一個重要引數就是mapred.map.tasks,這個引數設定的map數量僅僅是一個提示,只有當InputFormat 決定了map任務的個數比mapred.map.tasks值小時才起作用。同樣,Map任務的個數也能通過使用JobConf 的conf.setNumMapTasks(int num)方法來手動地設定。這個方法能夠用來增加map任務的個數,但是不能設定任務的個數小於Hadoop系統通過分割輸入資料得到的值。當然為了提高叢集的併發效率,可以設定一個預設的map數量,當用戶的map數量較小或者比本身自動分割的值還小時可以使用一個相對交大的預設值,從而提高整體hadoop叢集的效率。

2 reduece的數量

reduce在執行時往往需要從相關map端複製資料到reduce節點來處理,因此相比於map任務。reduce節點資源是相對比較缺少的,同時相對執行較慢,正確的reduce任務的個數應該是0.95或者1.75 *(節點數 ×mapred.tasktracker.tasks.maximum引數值)。如果任務數是節點個數的0.95倍,那麼所有的reduce任務能夠在 map任務的輸出傳輸結束後同時開始執行。如果任務數是節點個數的1.75倍,那麼高速的節點會在完成他們第一批reduce任務計算之後開始計算第二批 reduce任務,這樣的情況更有利於負載均衡。同時需要注意增加reduce的數量雖然會增加系統的資源開銷,但是可以改善負載勻衡,降低任務失敗帶來的負面影響。同樣,Reduce任務也能夠與 map任務一樣,通過設定JobConf 的conf.setNumReduceTasks(int num)方法來增加任務個數。

3 reduce數量為0

有些作業不需要進行歸約進行處理,那麼就可以設定reduce的數量為0來進行處理,這種情況下使用者的作業執行速度相對較高,map的輸出會直接寫入到 SetOutputPath(path)設定的輸出目錄,而不是作為中間結果寫到本地。同時Hadoop框架在寫入檔案系統前並不對之進行排序。