1. 程式人生 > >Caffe安裝成功測試(CPU環境下mnist測試)

Caffe安裝成功測試(CPU環境下mnist測試)

  1. 測試資料和訓練資料集的獲取:https://pan.baidu.com/s/1hry1f4g 將下載下來並解壓得到的測試和訓練資料mnist-test-leveldb和mnist-train-leveldb複製到.\caffe-master\examples\mnist\目錄下
  2. 將./caffe-master\windows\目錄下的CommonSettings.props做如下改動並儲存:
    true
    false
    7.5 true
    true(為了呼叫Python介面,將預設的false改為true)
    C:\ProgramData\Anaconda3\(紅色部分為Python.exe根目錄,注意最後一道斜槓)

    (CommonSettings.props檔案修改完成) 

  3.  修改.\caffe-master\examples\mnist\下的lenet_train_test.prototxt 做如下修改:  第13行修改為:
    data_param {
        source: "C:/ProgramData/Caffe/caffe-master/examples/mnist/mnist-train-leveldb"
        batch_size: 64
        backend: LEVELDB
      }

    第30行修改為:

    data_param {
        source: "C:/ProgramData/Caffe/caffe-master/examples/mnist/mnist-train-leveldb"
        batch_size: 64
        backend: LEVELDB
      }

    注意:source屬性值的資料路徑的斜槓是’/’而不是windows下的’\’  4. GPU和CPU的切換在lenet_solver.prototxt修改,最後一行把GPU改成CPU即可

    5.編寫windows下指令碼檔案run.bat

    .\Build\x64\Release\caffe.exe train --solver=examples/mnist/lenet_solver.prototxt
    pause

    將run.bat檔案放在./caffe-master/檔案下,雙擊run.bat檔案可以看到訓練的結果如下:

    ...
    ...
    I1030 22:57:11.207583 11204 sgd_solver.cpp:106] Iteration 9600, lr = 0.00603682
    I1030 22:57:17.158367 11204 solver.cpp:228] Iteration 9700, loss = 0.00264511
    I1030 22:57:17.158869 11204 solver.cpp:244]     Train net output #0: loss = 0.00264498 (* 1 = 0.00264498 loss)
    I1030 22:57:17.159369 11204 sgd_solver.cpp:106] Iteration 9700, lr = 0.00601382
    I1030 22:57:23.735081 11204 solver.cpp:228] Iteration 9800, loss = 0.0104211
    I1030 22:57:23.735081 11204 solver.cpp:244]     Train net output #0: loss = 0.010421 (* 1 = 0.010421 loss)
    I1030 22:57:23.735581 11204 sgd_solver.cpp:106] Iteration 9800, lr = 0.00599102
    I1030 22:57:29.758888 11204 solver.cpp:228] Iteration 9900, loss = 0.00677528
    I1030 22:57:29.759388 11204 solver.cpp:244]     Train net output #0: loss = 0.00677515 (* 1 = 0.00677515 loss)
    I1030 22:57:29.759891 11204 sgd_solver.cpp:106] Iteration 9900, lr = 0.00596843
    I1030 22:57:35.597347 11204 solver.cpp:454] Snapshotting to binary proto file examples/mnist/lenet_iter_10000.caffemodel
    I1030 22:57:35.615355 11204 sgd_solver.cpp:273] Snapshotting solver state to binary proto file examples/mnist/lenet_iter_10000.solverstate
    I1030 22:57:35.664417 11204 solver.cpp:317] Iteration 10000, loss = 0.00254389
    I1030 22:57:35.664916 11204 solver.cpp:337] Iteration 10000, Testing net (#0)
    I1030 22:57:39.652560 11204 solver.cpp:404]     Test net output #0: accuracy = 0.9912
    I1030 22:57:39.653061 11204 solver.cpp:404]     Test net output #1: loss = 0.0287646 (* 1 = 0.0287646 loss)
    I1030 22:57:39.653559 11204 solver.cpp:322] Optimization Done.
    I1030 22:57:39.654062 11204 caffe.cpp:255] Optimization Done.
    
    C:\ProgramData\Caffe\caffe-master>pause
    請按任意鍵繼續. . .

    可以看到預測的準確率達到了0.9912 ,測試成功。