E.Jiu Yuan Wants to Eat(ACM-ICPC 2018 焦作賽區網路預賽,樹鏈剖分)
描述
You ye Jiu yuan is the daughter of the Great GOD Emancipator. And when she becomes an adult, she will be queen of Tusikur, so she wanted to travel the world while she was still young. In a country, she found a small pub called Whitehouse. Just as she was about to go in for a drink, the boss Carola appeared. And ask her to solve this problem or she will not be allowed to enter the pub. The problem description is as follows:
There is a tree with nn nodes, each node ii contains weight a[i]a[i], the initial value of a[i]a[i] is 00. The root number of the tree is 11. Now you need to do the following operations:
1)1) Multiply all weight on the path from uu to vv by xx
2)2) For all weight on the path from uu to vv, increasing xx to them
3)3) For all weight on the path from uu to vv, change them to the bitwise NOT of them
4)4) Ask the sum of the weight on the path from uu to vv
The answer modulo 2^{64}264.
Jiu Yuan is a clever girl, but she was not good at algorithm, so she hopes that you can help her solve this problem. Ding\backsim\backsim\backsim∽∽∽
The bitwise NOT is a unary operation that performs logical negation on each bit, forming the ones’ complement of the given binary value. Bits that are 00 become 11, and those that are 11 become 00. For example:
NOT 0111 (decimal 7) = 1000 (decimal 8)
NOT 10101011 = 01010100
Input
The input contains multiple groups of data.
For each group of data, the first line contains a number of nn, and the number of nodes.
The second line contains (n - 1)(n−1) integers b_ibi, which means that the father node of node (i +1)(i+1) is b_ibi.
The third line contains one integer mm, which means the number of operations,
The next mm lines contain the following four operations:
At first, we input one integer opt
1)1) If opt is 11, then input 33 integers, u, v, xu,v,x, which means multiply all weight on the path from uu to vv by xx
2)2) If opt is 22, then input 33 integers, u, v, xu,v,x, which means for all weight on the path from uu to vv, increasing xx to them
3)3) If opt is 33, then input 22 integers, u, vu,v, which means for all weight on the path from uu to vv, change them to the bitwise NOT of them
4)4) If opt is 44, then input 22 integers, u, vu,v, and ask the sum of the weights on the path from uu to vv
1 \le n,m,u,v \le 10^51≤n,m,u,v≤105
1 \le x < 2^{64}1≤x<264
Output
For each operation 44, output the answer.
樣例輸入
7
1 1 1 2 2 4
5
2 5 6 1
1 1 6 2
4 5 6
3 5 2
4 2 2
2
1
4
3 1 2
4 1 2
3 1 1
4 1 1
樣例輸出
5
18446744073709551613
18446744073709551614
0
題目來源
思路
給你一棵樹,你要支援如下操作:
1 u v x
:在樹上u到v路徑上的所有點的值增加v2 u v x
:在樹上u到v路徑上的所有點的值乘v3 u v
:在樹上u到v路徑上的所有點的值按位取反4 u v
:查詢u到v路徑上的所有點權和
要求所有的操作對於取模。
1 2 操作是樹鏈剖分的經典操作。
那麼3操作,按位取反就可以轉化為兩個操作,先給這個值+1在乘以-1.
線段樹維護的時候線上段樹pushdown
向下更新的時候,先更新區間和的左右兒子,根據我們規定的優先度,兒子的值=此刻兒子的值*爸爸的乘法lazy+兒子的區間長度*爸爸的加法lazy,然後再分別維護乘法的lazy和加法的lazy,最後取消標記
在update
更新的時候,當更新到乘法的時候,需要更新區間和,乘法lazy和加法lazy;當更新加法的時候,只需要更新區間和和加法的lazy就可以了。
剩下的就是樹剖的經典操作了,取模因為用unsigned long long
會自動溢位,不用管.
程式碼
#include <bits/stdc++.h>
using namespace std;
#define lson l, m, rt << 1
#define rson m + 1, r, rt << 1 | 1
#define mem(a, b) memset(a, b, sizeof(a))
typedef unsigned long long ull;
typedef long long ll;
const ull N = 1e5 + 10;
ull n, m;
ull first[N], tot;
ull son[N], id[N], fa[N], cnt, dep[N], siz[N], top[N];
ull mul[N << 2], add[N << 2], sum[N << 2];
ull res = 0;
struct edge
{
ull v, next;
} e[N * 2];
void add_edge(ull u, ull v)
{
e[tot].v = v;
e[tot].next = first[u];
first[u] = tot++;
}
void init()
{
mem(first, -1);
tot = 0;
cnt = 0;
}
void pushup(ull rt)
{
sum[rt] = sum[rt << 1] + sum[rt << 1 | 1];
}
void build(ull l, ull r, ull rt)
{
mul[rt] = 1;
add[rt] = 0;
if (l == r)
{
sum[rt] = 0;
return;
}
ull m = (l + r) >> 1;
build(lson);
build(rson);
pushup(rt);
}
void pushdown(ull l, ull r, ull rt)
{
ull m = (l + r) >> 1;
sum[rt << 1] = sum[rt << 1] * mul[rt] + add[rt] * (m - l + 1);
sum[rt << 1 | 1] = sum[rt << 1 | 1] * mul[rt] + add[rt] * (r - m);
mul[rt << 1] *= mul[rt];
mul[rt << 1 | 1] *= mul[rt];
add[rt << 1] = add[rt << 1] * mul[rt] + add[rt];
add[rt << 1 | 1] = add[rt << 1 | 1] * mul[rt] + add[rt];
mul[rt] = 1;
add[rt] = 0;
}
void update1(ull L, ull R, ull k, ull l, ull r, ull rt) //乘法
{
if (L <= l && r <= R)
{
sum[rt] *= k;
mul[rt] *= k;
add[rt] *= k;
return;
}
pushdown(l, r, rt);
ull m = (l + r) >> 1;
if (L <= m)
update1(L, R, k, lson);
if (R > m)
update1(L, R, k, rson);
pushup(rt);
return;
}
void update2(ull L, ull R, ull k, ull l, ull r, ull rt) //加法
{
if (L <= l && r <= R)
{
add[rt] += k;
sum[rt] += k * (r - l + 1);
return;
}
pushdown(l, r, rt);
ull m = (l + r) >> 1;
if (L <= m)
update2(L, R, k, lson);
if (R > m)
update2(L, R, k, rson);
pushup(rt);
return;
}
void query(ull L, ull R, ull l, ull r, ull rt)
{
if (L <= l && r <= R)
{
res += sum[rt];
return;
}
pushdown(l, r, rt);
ull m = (l + r) >> 1;
if (L <= m)
query(L, R, lson);
if (R > m)
query(L, R, rson);
}
void dfs1(ull u, ull f, ull deep)
{
dep[u] = deep;
fa[u] = f;
siz[u] = 1;
son[u] = 0;
ull maxson = 0; //不能為-1,因為ull沒有負數
for (ull i = first[u]; ~i; i = e[i].next)
{
ull v = e[i].v;
if (v == f)
continue;
dfs1(v, u, deep + 1);
siz[u] += siz[v];
if (siz[v] > maxson)
{
son[u] = v;
maxson = siz[v];
}
}
}
void dfs2(ull u, ull topf)
{
id[u] = ++cnt;
top[u] = topf;
if (!son[u])
return;
dfs2(son[u], topf);
for (ull i = first[u]; ~i; i = e[i].next)
{
ull v = e[i].v;
if (v == fa[u] || v == son[u])
continue;
dfs2(v, v);
}
}
void updrange1(ull x, ull y, ull k) //u-->v乘x
{
while (top[x] != top[y])
{
if (dep[top[x]] < dep[top[y]])
swap(x, y);
update1(id[top[x]], id[x], k, 1, n, 1);
x = fa[top[x]];
}
if (dep[x] > dep[y])
swap(x, y);
update1(id[x], id[y], k, 1, n, 1);
}
void updrange2(ull x, ull y, ull k) //u-->v加x
{
while (top[x] != top[y])
{
if (dep[top[x]] < dep[top[y]])
swap(x, y);
update2(id[top[x]], id[x], k, 1, n, 1);
x = fa[top[x]];
}
if (dep[x] > dep[y])
swap(x, y);
update2(id[x], id[y], k, 1, n, 1);
}
ull qrange(ull x, ull y)
{
ull ans = 0;
while (top[x] != top[y])
{
if (dep[top[x]] < dep[top[y]])
swap(x, y);
res = 0;
query(id[top[x]], id[x], 1, n, 1);
ans += res;
x = fa[top[x]];
}
if (dep[x] > dep[y]) //使x深度較小
swap(x, y);
res = 0;
query(id[x], id[y], 1, n, 1);
ans += res;
return ans;
}
int main()
{
//freopen("in.txt", "r", stdin);
ull op, u, v, x;
while (~scanf("%llu", &n))
{
init();
for (ull i = 2; i <= n; i++)
{
scanf("%llu", &x);
add_edge(x, i);
add_edge(i, x);
}
dfs1(1, 0, 1);
dfs2(1, 1);
build(1, n, 1);
scanf("%llu", &m);
while (m--)
{
scanf("%llu%llu%llu", &op, &u, &v);
if (op == 1)
{
scanf("%llu", &x);
updrange1(u, v, x);
}
else if (op == 2)
{
scanf("%llu", &x);
updrange2(u, v, x);
}
else if (op == 3)
{
updrange2(u, v, 1);
updrange1(u, v, -1);
}
else if (op == 4)
{
printf("%llu\n", qrange(u, v));
}
}
}
return 0;
}