1. 程式人生 > >caffe原始碼導讀(四)Blob.cpp解析

caffe原始碼導讀(四)Blob.cpp解析

本系列參考<深度學習21天實戰caffe>這本書所做的筆記,如果錯誤歡迎指導

前篇

caffe 原始碼導讀(一) 瞭解protobuf
caffe 原始碼導讀(二) Blob資料結構介紹
caffe 原始碼導讀(三) Blob.hpp標頭檔案解析
d===========================================================================d

caffe原始碼導讀(四)Blob.cpp解析

直接看程式碼解析

#include <climits>
#include <vector>
#include "caffe/blob.hpp" #include "caffe/common.hpp" #include "caffe/syncedmem.hpp" #include "caffe/util/math_functions.hpp" namespace caffe { template <typename Dtype> void Blob<Dtype>::Reshape(const int num, const int channels, const int height, const int width) { vector<int>
shape(4); shape[0] = num; shape[1] = channels; shape[2] = height; shape[3] = width; Reshape(shape); } template <typename Dtype> void Blob<Dtype>::Reshape(const vector<int>& shape) { CHECK_LE(shape.size(), kMaxBlobAxes); count_ = 1; // 用於計算元素總數 shape_.resize(shape.
size()); // 成員變數也被重置,調整shape_的維度數和輸入的一樣 // 如果 shape_data_(blob)的訓練資料未分配記憶體資源,或者指向儲存空間小魚輸入shape形狀的大小 // 重新分配shape大小的記憶體空間 if (!shape_data_ || shape_data_->size() < shape.size() * sizeof(int)) { shape_data_.reset(new SyncedMemory(shape.size() * sizeof(int))); } // 型別轉換,轉換成指向int資料型別指標 int* shape_data = static_cast<int*>(shape_data_->mutable_cpu_data()); // 逐個維度檢查對應形狀大小是否超出int秒速能力,並累計計算佔的空間count_ for (int i = 0; i < shape.size(); ++i) { CHECK_GE(shape[i], 0); //保證每一個維度的尺度>=0 if (count_ != 0) { // INT_MAX=2^31-1,為了保證count_不溢位 CHECK_LE(shape[i], INT_MAX / count_) << "blob size exceeds INT_MAX"; } count_ *= shape[i];// count累乘, 先乘n,再c,再h,再w shape_[i] = shape[i]; // 形狀資料賦值 shape_data[i] = shape[i]; //形狀資料指標,shape_data是上面第33行出現的 } // 如果新的count_大於當前已分配空間容量,重新分配記憶體空間 // capacity_在標頭檔案中定義的,blob的容積量 if (count_ > capacity_) { capacity_ = count_; // shared_ptr,通過reset方式來重新賦值,開闢新的動態記憶體空間給blob data_.reset(new SyncedMemory(capacity_ * sizeof(Dtype))); diff_.reset(new SyncedMemory(capacity_ * sizeof(Dtype))); } } template <typename Dtype> void Blob<Dtype>::Reshape(const BlobShape& shape) { CHECK_LE(shape.dim_size(), kMaxBlobAxes); vector<int> shape_vec(shape.dim_size()); //創一個vec,再呼叫Reshape for (int i = 0; i < shape.dim_size(); ++i) { shape_vec[i] = shape.dim(i); } Reshape(shape_vec); } template <typename Dtype> void Blob<Dtype>::ReshapeLike(const Blob<Dtype>& other) { Reshape(other.shape()); //其他Blob的shape來初始化 } template <typename Dtype> Blob<Dtype>::Blob(const int num, const int channels, const int height, const int width) // capacity_ must be initialized before calling Reshape // 呼叫Reshape之前必須初始化,這些都是建構函式裡的 : capacity_(0) { Reshape(num, channels, height, width); } template <typename Dtype> Blob<Dtype>::Blob(const vector<int>& shape) // capacity_ must be initialized before calling Reshape : capacity_(0) { Reshape(shape); } //獲取Blob在gpu儲存資料形狀的指標,const表示無法通過指標修改資料 template <typename Dtype> const int* Blob<Dtype>::gpu_shape() const { CHECK(shape_data_); return (const int*)shape_data_->gpu_data(); } template <typename Dtype> const Dtype* Blob<Dtype>::cpu_data() const { CHECK(data_);//保證data不為空 return (const Dtype*)data_->cpu_data(); } template <typename Dtype> void Blob<Dtype>::set_cpu_data(Dtype* data) { CHECK(data); // Make sure CPU and GPU sizes remain equal size_t size = count_ * sizeof(Dtype); if (data_->size() != size) { data_.reset(new SyncedMemory(size)); diff_.reset(new SyncedMemory(size)); } data_->set_cpu_data(data); //設定成員變數的值為傳入的引數值 } template <typename Dtype> const Dtype* Blob<Dtype>::gpu_data() const { CHECK(data_); return (const Dtype*)data_->gpu_data(); //只讀獲取gpu_data的指標 } template <typename Dtype> void Blob<Dtype>::set_gpu_data(Dtype* data) { CHECK(data); // Make sure CPU and GPU sizes remain equal size_t size = count_ * sizeof(Dtype); if (data_->size() != size) { data_.reset(new SyncedMemory(size)); diff_.reset(new SyncedMemory(size)); } data_->set_gpu_data(data);//設定成員變數的值為傳入的引數值 gpu了 } template <typename Dtype> const Dtype* Blob<Dtype>::cpu_diff() const { CHECK(diff_); return (const Dtype*)diff_->cpu_data();// 只讀獲取cpu_diff指標 } template <typename Dtype> const Dtype* Blob<Dtype>::gpu_diff() const { CHECK(diff_); return (const Dtype*)diff_->gpu_data();// 只讀獲取gpu_diff指標 } template <typename Dtype> Dtype* Blob<Dtype>::mutable_cpu_data() { //讀寫訪問cpu_data指標 CHECK(data_); return static_cast<Dtype*>(data_->mutable_cpu_data()); } template <typename Dtype> Dtype* Blob<Dtype>::mutable_gpu_data() { //讀寫訪問gpu_data指標 CHECK(data_); return static_cast<Dtype*>(data_->mutable_gpu_data()); } template <typename Dtype> Dtype* Blob<Dtype>::mutable_cpu_diff() { CHECK(diff_); return static_cast<Dtype*>(diff_->mutable_cpu_data()); } template <typename Dtype> Dtype* Blob<Dtype>::mutable_gpu_diff() { CHECK(diff_); return static_cast<Dtype*>(diff_->mutable_gpu_data()); } template <typename Dtype> void Blob<Dtype>::ShareData(const Blob& other) { // 共享另一個Blob的data指標 CHECK_EQ(count_, other.count()); data_ = other.data(); } template <typename Dtype> void Blob<Dtype>::ShareDiff(const Blob& other) { // 共享另一個Blob的diff指標 CHECK_EQ(count_, other.count()); diff_ = other.diff(); } // The "update" method is used for parameter blobs in a Net, which are stored // as Blob<float> or Blob<double> -- hence we do not define it for // Blob<int> or Blob<unsigned int>. // update用於網路引數blob更新,只有float個double實現,並沒有int和unsigned實現 template <> void Blob<unsigned int>::Update() { NOT_IMPLEMENTED; } template <> void Blob<int>::Update() { NOT_IMPLEMENTED; } template <typename Dtype> void Blob<Dtype>::Update() { // We will perform update based on where the data is located. // data在哪裡,就在哪裡更新 switch (data_->head()) { case SyncedMemory::HEAD_AT_CPU: // data位於cpu端 // perform computation on CPU // 執行cpu上的計算,data_[i] = data_[i] - diff_[i], i=0,1,...,count-1 // 在util/math_functions.cpp中,呼叫了cblas_saxpy函式 //template <typename Dtype> // void caffe_axpy(const int N, const Dtype alpha, const Dtype* X, Dtype* Y); // void caffe_axpy<float>(const int N, const float alpha, const float* X,float* Y) { // cblas_saxpy(N, alpha, X, 1, Y, 1); }實現 0-n中,-1*diff + data_ // 有一篇部落格總結了 caffe呼叫的cblas函式 // https://www.cnblogs.com/jianyingzhou/p/4444728.html caffe_axpy<Dtype>(count_, Dtype(-1), static_cast<const Dtype*>(diff_->cpu_data()), static_cast<Dtype*>(data_->mutable_cpu_data())); break; case SyncedMemory::HEAD_AT_GPU: //data位於gpu端,或者cpu/gpu同步 case SyncedMemory::SYNCED: #ifndef CPU_ONLY // perform computation on GPU // GPU上的計算 data_[i] = data_[i] - diff_[i] caffe_gpu_axpy<Dtype>(count_, Dtype(-1), static_cast<const Dtype*>(diff_->gpu_data()), static_cast<Dtype*>(data_->mutable_gpu_data())); #else NO_GPU; #endif break; default: LOG(FATAL) << "Syncedmem not initialized."; } } // 計算L1範數,但是這邊好像並不能使用 template <> unsigned int Blob<unsigned int>::asum_data() const { NOT_IMPLEMENTED; return 0; } template <> int Blob<int>::asum_data() const { NOT_IMPLEMENTED; return 0; } template <typename Dtype> Dtype Blob<Dtype>::asum_data() const { if (!data_) { return 0; } // 如果data為空,返回0 switch (data_->head()) { // 選擇data_的指標頭是在cpu上還是gpu上 /** Returns the sum of the absolute values of the elements of vector x template <typename Dtype> Dtype caffe_cpu_asum(const int n, const Dtype* x); float caffe_cpu_asum<float>(const int n, const float* x) { return cblas_sasum(n, x, 1); 功能:計算 vector x 的所有element的絕對值之和。 } **/ case SyncedMemory::HEAD_AT_CPU: return caffe_cpu_asum(count_, cpu_data());// cpu上L1範數計算,即絕對值之和 case SyncedMemory::HEAD_AT_GPU: case SyncedMemory::SYNCED: #ifndef CPU_ONLY { Dtype asum; caffe_gpu_asum(count_, gpu_data(), &asum); return asum; } #else NO_GPU; #endif case SyncedMemory::UNINITIALIZED: return 0; default: LOG(FATAL) << "Unknown SyncedMemory head state: " << data_->head(); } return 0; } template <> unsigned int Blob<unsigned int>::asum_diff() const { NOT_IMPLEMENTED; return 0; } template <> int Blob<int>::asum_diff() const { NOT_IMPLEMENTED; return 0; } template <typename Dtype> Dtype Blob<Dtype>::asum_diff() const { if (!diff_) { return 0; } switch (diff_->head()) { case SyncedMemory::HEAD_AT_CPU: return caffe_cpu_asum(count_, cpu_diff()); // 計算diff的L1範數 case SyncedMemory::HEAD_AT_GPU: case SyncedMemory::SYNCED: #ifndef CPU_ONLY { Dtype asum; caffe_gpu_asum(count_, gpu_diff(), &asum); return asum; } #else NO_GPU; #endif case SyncedMemory::UNINITIALIZED: return 0; default: LOG(FATAL) << "Unknown SyncedMemory head state: " << diff_->head(); } return 0; } template <> unsigned int Blob<unsigned int>::sumsq_data() const { NOT_IMPLEMENTED; return 0; } template <> int Blob<int>::sumsq_data() const { NOT_IMPLEMENTED; return 0; } // 計算data_的L2範數 template <typename Dtype> Dtype Blob<Dtype>::sumsq_data() const { Dtype sumsq; const Dtype* data; if (!data_) { return 0; } switch (data_->head()) { case SyncedMemory::HEAD_AT_CPU: data = cpu_data(); sumsq = caffe_cpu_dot(count_, data, data);//執行cpu上的dot計算 break; case SyncedMemory::HEAD_AT_GPU: case SyncedMemory::SYNCED: #ifndef CPU_ONLY data = gpu_data(); caffe_gpu_dot(count_, data, data, &sumsq)<