caffe原始碼 之 Blob類
阿新 • • 發佈:2019-02-12
本文主要解析caffe框架中原始碼檔案/src/caffe/blob.cpp,該檔案主要實現caffe的資料儲存與傳遞。
caffe中Blob類主要用來表示網路中的資料,包括訓練資料,網路各層自身的引數(包括權值、偏置以及它們的梯度),網路之間傳遞的資料都是通過 Blob 來實現的,同時 Blob 資料也支援在 CPU 與 GPU 上儲存,能夠在兩者之間做同步。
下面是我看原始碼時,蒐集的註釋,以及對原始碼的理解
Blob.hpp::::::::::::::::
#ifndef CAFFE_BLOB_HPP_
#define CAFFE_BLOB_HPP_
#include <algorithm>
#include <string>
#include <vector>
#include "caffe/common.hpp"
#include "caffe/proto/caffe.pb.h"
#include "caffe/syncedmem.hpp"
const int kMaxBlobAxes = 32;
namespace caffe {
/**
* @brief A wrapper around SyncedMemory holders serving as the basic
* computational unit through which Layer%s, Net%s, and Solver%s
* interact.
*
* TODO(dox): more thorough description.
*/
template <typename Dtype>
class Blob {
public:
Blob() //建構函式
: data_(), diff_(), count_(0), capacity_(0) {}
/// @brief Deprecated; use <code>Blob(const vector<int>& shape)</code>.
explicit Blob(const int num, const int channels, const int height,
const int width);
explicit Blob(const vector<int>& shape);
/// @brief Deprecated; use <code>Reshape(const vector<int>& shape)</code>.
void Reshape(const int num, const int channels, const int height,
const int width);
/**
* @brief Change the dimensions of the blob, allocating new memory if
* necessary.
*
* This function can be called both to create an initial allocation
* of memory, and to adjust the dimensions of a top blob during Layer::Reshape
* or Layer::Forward. When changing the size of blob, memory will only be
* reallocated if sufficient memory does not already exist, and excess memory
* will never be freed.
*
* Note that reshaping an input blob and immediately calling Net::Backward is
* an error; either Net::Forward or Net::Reshape need to be called to
* propagate the new input shape to higher layers.
*/
void Reshape(const vector<int>& shape);
void Reshape(const BlobShape& shape);
void ReshapeLike(const Blob& other);
inline string shape_string() const {
ostringstream stream; //輸出資料的維度,以空格分隔,最後輸出一維維度(total)
for (int i = 0; i < shape_.size(); ++i) {
stream << shape_[i] << " ";
}
stream << "(" << count_ << ")";
return stream.str();
}
//返回blob的shape
inline const vector<int>& shape() const { return shape_; }
/**
* @brief Returns the dimension of the index-th axis (or the negative index-th
* axis from the end, if index is negative).
*
* @param index the axis index, which may be negative as it will be
* "canonicalized" using CanonicalAxisIndex.
* Dies on out of range index.
*/
//獲取第index維的大小,返回某一維的尺寸
inline int shape(int index) const {
return shape_[CanonicalAxisIndex(index)];
}
//返回資料維度就維的個數
inline int num_axes() const { return shape_.size(); }
//返回資料的所有維度的乘積,即資料的個數
inline int count() const { return count_; }
/**
* @brief Compute the volume of a slice; i.e., the product of dimensions
* among a range of axes.
*
* @param start_axis The first axis to include in the slice.
*
* @param end_axis The first axis to exclude from the slice.
*/
// 獲取某幾維資料的大小
inline int count(int start_axis, int end_axis) const {
CHECK_LE(start_axis, end_axis);
CHECK_GE(start_axis, 0);
CHECK_GE(end_axis, 0);
CHECK_LE(start_axis, num_axes());
CHECK_LE(end_axis, num_axes());
int count = 1;
for (int i = start_axis; i < end_axis; ++i) {
count *= shape(i);
}
return count;
}
/**
* @brief Compute the volume of a slice spanning from a particular first
* axis to the final axis.
*
* @param start_axis The first axis to include in the slice.
*/
// 給定的維度到最後的維度之間包含的資料個數
inline int count(int start_axis) const {
return count(start_axis, num_axes());
}
/**
* @brief Returns the 'canonical' version of a (usually) user-specified axis,
* allowing for negative indexing (e.g., -1 for the last axis).
*
* @param axis_index the axis index.
* If 0 <= index < num_axes(), return index.
* If -num_axes <= index <= -1, return (num_axes() - (-index)),
* e.g., the last axis index (num_axes() - 1) if index == -1,
* the second to last if index == -2, etc.
* Dies on out of range index.
*/
// 支援負數維度索引,負數表示從後往前,返回的是正確的維度索引(相當於將負數索引進行的轉換)
// Blob的Index是可以從負座標開始讀的,標準化索引,主要是對引數索引進行標準化,以滿足要求,轉換座標軸索引[-N,N]為[0,N]
inline int CanonicalAxisIndex(int axis_index) const {
// 判斷是否在範圍內[-numaxes, numaxes]
CHECK_GE(axis_index, -num_axes())
<< "axis " << axis_index << " out of range for " << num_axes()
<< "-D Blob with shape " << shape_string();
CHECK_LT(axis_index, num_axes())
<< "axis " << axis_index << " out of range for " << num_axes()
<< "-D Blob with shape " << shape_string();
if (axis_index < 0) {
return axis_index + num_axes();
}
return axis_index;
}
/// @brief Deprecated legacy shape accessor num: use shape(0) instead.
inline int num() const { return LegacyShape(0); }
/// @brief Deprecated legacy shape accessor channels: use shape(1) instead.
inline int channels() const { return LegacyShape(1); }
/// @brief Deprecated legacy shape accessor height: use shape(2) instead.
inline int height() const { return LegacyShape(2); }
/// @brief Deprecated legacy shape accessor width: use shape(3) instead.
inline int width() const { return LegacyShape(3); }
// 檢查blob的維度個數是不是小於4,Blob中的4個維num,channel,height,width可以直接通過shape(0),shape(1),shape(2),shape(3)來訪問
// 返回的是每維資料的大小,等同於shape()函式的功能s
inline int LegacyShape(int index) const {
CHECK_LE(num_axes(), 4)
<< "Cannot use legacy accessors on Blobs with > 4 axes.";
CHECK_LT(index, 4); // 檢查維度索引是不是小於4
CHECK_GE(index, -4); // 檢查維度索引是不是大於-4
if (index >= num_axes() || index < -num_axes()) {
// Axis is out of range, but still in [0, 3] (or [-4, -1] for reverse
// indexing) -- this special case simulates the one-padding used to fill
// extraneous axes of legacy blobs.
return 1;
}
return shape(index);
}
// 計算一維線性偏移量
inline int offset(const int n, const int c = 0, const int h = 0,
const int w = 0) const {
CHECK_GE(n, 0); /*判斷輸入引數是否超過閾值*/
CHECK_LE(n, num());
CHECK_GE(channels(), 0);
CHECK_LE(c, channels());
CHECK_GE(height(), 0);
CHECK_LE(h, height());
CHECK_GE(width(), 0);
CHECK_LE(w, width());
return ((n * channels() + c) * height() + h) * width() + w;
}
// 計算一維線性偏移量,只不過引數用的是vector<int>
inline int offset(const vector<int>& indices) const {
CHECK_LE(indices.size(), num_axes());
int offset = 0;
for (int i = 0; i < num_axes(); ++i) {
offset *= shape(i);
if (indices.size() > i) {
CHECK_GE(indices[i], 0);
CHECK_LT(indices[i], shape(i));
offset += indices[i];
}
}
return offset;
}
/**
* @brief Copy from a source Blob.
*
* @param source the Blob to copy from
* @param copy_diff if false, copy the data; if true, copy the diff
* @param reshape if false, require this Blob to be pre-shaped to the shape
* of other (and die otherwise); if true, Reshape this Blob to other's
* shape if necessary
* 從給定的blob進行復制,如果copy_diff=true則新的blob複製的是diff,
* 如果reshape=true則改變新blob的形狀
*/
void CopyFrom(const Blob<Dtype>& source, bool copy_diff = false,
bool reshape = false);
// 獲取在記憶體下的資料(前向傳播所用的資料)
inline Dtype data_at(const int n, const int c, const int h,
const int w) const {
return cpu_data()[offset(n, c, h, w)];
}
// 獲取在記憶體下的後向傳播的資料
inline Dtype diff_at(const int n, const int c, const int h,
const int w) const {
return cpu_diff()[offset(n, c, h, w)];
}
// 獲取cpu記憶體中offset指定位置的前向傳播資料
inline Dtype data_at(const vector<int>& index) const {
return cpu_data()[offset(index)];
}
// 獲取cpu記憶體中offset指定位置的返向傳播資料
inline Dtype diff_at(const vector<int>& index) const {
return cpu_diff()[offset(index)];
}
// 返回前向傳播資料地址(前向傳播資料一般為影象本身資料)
inline const shared_ptr<SyncedMemory>& data() const {
CHECK(data_);
return data_;
}
// 返回後向傳播資料地址(後向傳播資料一般為影象資料導數)
inline const shared_ptr<SyncedMemory>& diff() const {
CHECK(diff_);
return diff_;
}
//記憶體資料的地址返回,資料清空等操作,詳見.cpp
const Dtype* cpu_data() const;
void set_cpu_data(Dtype* data);
const int* gpu_shape() const;
const Dtype* gpu_data() const;
const Dtype* cpu_diff() const;
const Dtype* gpu_diff() const;
// 一些記憶體同步與處理的函式見SycedMem.cpp中具體定義
Dtype* mutable_cpu_data();
Dtype* mutable_gpu_data();
Dtype* mutable_cpu_diff();
Dtype* mutable_gpu_diff();
// 資料更新,blob裡面的data部分減去diff部分
void Update();
// 從protobuf序列化檔案讀取blob物件
void FromProto(const BlobProto& proto, bool reshape = true);
// 將物件序列化為protobuf檔案
void ToProto(BlobProto* proto, bool write_diff = false) const;
/// @brief Compute the sum of absolute values (L1 norm) of the data.
// 計算data的L1範數
Dtype asum_data() const;
/// @brief Compute the sum of absolute values (L1 norm) of the diff.
// 計算diff的L1範數
Dtype asum_diff() const;
/// @brief Compute the sum of squares (L2 norm squared) of the data.
// 計算data的L2範數
Dtype sumsq_data() const;
/// @brief Compute the sum of squares (L2 norm squared) of the diff.
// 計算diff的L2範數
Dtype sumsq_diff() const;
/// @brief Scale the blob data by a constant factor.
// 歸一化data資料
void scale_data(Dtype scale_factor);
/// @brief Scale the blob diff by a constant factor.
// 歸一化diff資料
void scale_diff(Dtype scale_factor);
/**
* @brief Set the data_ shared_ptr to point to the SyncedMemory holding the
* data_ of Blob other -- useful in Layer%s which simply perform a copy
* in their Forward pass.
*
* This deallocates the SyncedMemory holding this Blob's data_, as
* shared_ptr calls its destructor when reset with the "=" operator.
*/
// 與other共享data資料,把other的data資料指標傳給本blob
void ShareData(const Blob& other);
/**
* @brief Set the diff_ shared_ptr to point to the SyncedMemory holding the
* diff_ of Blob other -- useful in Layer%s which simply perform a copy
* in their Forward pass.
*
* This deallocates the SyncedMemory holding this Blob's diff_, as
* shared_ptr calls its destructor when reset with the "=" operator.
*/
// 與other共享diff資料,把other的diff資料指標傳給本blob
void ShareDiff(const Blob& other);
// 判斷本blob與other形狀是否相等
bool ShapeEquals(const BlobProto& other);
protected:/*shared_ptr屬於boost庫的智慧指標*/
// 前向傳播的資料
shared_ptr<SyncedMemory> data_;
// diff是反向傳播的資料即偏差
shared_ptr<SyncedMemory> diff_;
// 舊的儲存Blob的形狀
shared_ptr<SyncedMemory> shape_data_;
// 新的儲存Blob的形狀
vector<int> shape_;
//資料的個數,也就是個數*通道數*高度*寬度 (實際資料的大小)
int count_;
//元素個數 (記憶體最大能儲存資料的大小)
int capacity_;
DISABLE_COPY_AND_ASSIGN(Blob);
}; // class Blob
} // namespace caffe
#endif // CAFFE_BLOB_HPP_
Blob.cpp::::::::::::::::
#include <climits>
#include <vector>
#include "caffe/blob.hpp"
#include "caffe/common.hpp"
#include "caffe/syncedmem.hpp"
#include "caffe/util/math_functions.hpp"
namespace caffe {
template <typename Dtype> /*老的reshape方法,呼叫下面的新reshape*/
void Blob<Dtype>::Reshape(const int num, const int channels, const int height,
const int width) {
vector<int> shape(4);
shape[0] = num;
shape[1] = channels;
shape[2] = height;
shape[3] = width;
Reshape(shape);
}
template <typename Dtype> /*新的reshape及其具體實現*/
void Blob<Dtype>::Reshape(const vector<int>& shape) {
CHECK_LE(shape.size(), kMaxBlobAxes); //是否小於規定的最大BLOB的維度(32維)
count_ = 1;
shape_.resize(shape.size()); //首先將大小設定為vector<int> shape_; 即新的形狀資料的大小
if (!shape_data_ || shape_data_->size() < shape.size() * sizeof(int)) {
shape_data_.reset(new SyncedMemory(shape.size() * sizeof(int)));
}
int* shape_data = static_cast<int*>(shape_data_->mutable_cpu_data());
for (int i = 0; i < shape.size(); ++i) {
// 檢查形狀資料是否合法
CHECK_GE(shape[i], 0);
if (count_ != 0) {
CHECK_LE(shape[i], INT_MAX / count_) << "blob size exceeds INT_MAX";
}
// 計算資料個數
count_ *= shape[i];
// 複製shape到新的和舊的形狀資料
shape_[i] = shape[i];
shape_data[i] = shape[i];
}
// 判斷是否大於儲存的容量
if (count_ > capacity_) {
capacity_ = count_;
// 重新分配記憶體
data_.reset(new SyncedMemory(capacity_ * sizeof(Dtype)));
diff_.reset(new SyncedMemory(capacity_ * sizeof(Dtype)));
}
}
// 所謂的reshape實際上就僅僅是複製了shape的資料而已
template <typename Dtype>
void Blob<Dtype>::Reshape(const BlobShape& shape) {
CHECK_LE(shape.dim_size(), kMaxBlobAxes);// 維度是否小於32
vector<int> shape_vec(shape.dim_size());
// 複製形狀資料
for (int i = 0; i < shape.dim_size(); ++i) {
shape_vec[i] = shape.dim(i);
}
// 呼叫新的reshape函式
Reshape(shape_vec);
}
/*依照其他blob來修改當前blob的形狀*/
template <typename Dtype>
void Blob<Dtype>::ReshapeLike(const Blob<Dtype>& other) {
Reshape(other.shape());
}
/*blob建構函式*/
template <typename Dtype>
Blob<Dtype>::Blob(const int num, const int channels, const int height,
const int width)
// capacity_ must be initialized before calling Reshape
: capacity_(0) {
Reshape(num, channels, height, width); //先初始化容量為0,然後用reshape來分配記憶體了
}
/*blob建構函式*/
template <typename Dtype>
Blob<Dtype>::Blob(const vector<int>& shape)
// capacity_ must be initialized before calling Reshape
: capacity_(0) {
Reshape(shape);
}
/*返回gpu中blob物件中資料的記憶體地址*/
template <typename Dtype>
const int* Blob<Dtype>::gpu_shape() const {
CHECK(shape_data_);
return (const int*)shape_data_->gpu_data();
}
/*返回cpu中blob物件中資料的記憶體地址*/
template <typename Dtype>
const Dtype* Blob<Dtype>::cpu_data() const {
CHECK(data_);
return (const Dtype*)data_->cpu_data();
}
/*呼叫SyncedMemory的set_cpu_data函式來設定cpu的資料的記憶體地址,並清空資料*/
template <typename Dtype>
void Blob<Dtype>::set_cpu_data(Dtype* data) {
CHECK(data);
data_->set_cpu_data(data);
}
/*返回gpu中blob物件中資料的記憶體地址*/
template <typename Dtype>
const Dtype* Blob<Dtype>::gpu_data() const {
CHECK(data_);
return (const Dtype*)data_->gpu_data();
}
/*返回cpu中blob物件中資料的導數的記憶體地址*/
template <typename Dtype>
const Dtype* Blob<Dtype>::cpu_diff() const {
CHECK(diff_);
return (const Dtype*)diff_->cpu_data();
}
/*返回gpu中blob物件中資料的導數的記憶體地址*/
template <typename Dtype>
const Dtype* Blob<Dtype>::gpu_diff() const {
CHECK(diff_);
return (const Dtype*)diff_->gpu_data();
}
//呼叫SyncedMemory.cpp中的mutable_cpu_data()
template <typename Dtype>
Dtype* Blob<Dtype>::mutable_cpu_data() {
CHECK(data_);
return static_cast<Dtype*>(data_->mutable_cpu_data());
}
//呼叫SyncedMemory.cpp中的mutable_gpu_data()
template <typename Dtype>
Dtype* Blob<Dtype>::mutable_gpu_data() {
CHECK(data_);
return static_cast<Dtype*>(data_->mutable_gpu_data());
}
//呼叫SyncedMemory.cpp中的mutable_cpu_data()
template <typename Dtype>
Dtype* Blob<Dtype>::mutable_cpu_diff() {
CHECK(diff_);
return static_cast<Dtype*>(diff_->mutable_cpu_data());
}
//呼叫SyncedMemory.cpp中的mutable_gpu_data()
template <typename Dtype>
Dtype* Blob<Dtype>::mutable_gpu_diff() {
CHECK(diff_);
return static_cast<Dtype*>(diff_->mutable_gpu_data());
}
// 當前blob資料的指標指向其他blob的資料,以實現共享data
template <typename Dtype>
void Blob<Dtype>::ShareData(const Blob& other) {
CHECK_EQ(count_, other.count());
data_ = other.data();
}
// 當前blob資料的指標指向其他blob的資料,以實現共享diff
template <typename Dtype>
void Blob<Dtype>::ShareDiff(const Blob& other) {
CHECK_EQ(count_, other.count());
diff_ = other.diff();
}
// The "update" method is used for parameter blobs in a Net, which are stored
// as Blob<float> or Blob<double> -- hence we do not define it for
// Blob<int> or Blob<unsigned int>.
template <> void Blob<unsigned int>::Update() { NOT_IMPLEMENTED; }
template <> void Blob<int>::Update() { NOT_IMPLEMENTED; }
// Update是計算data=-1 * diff + data
// 更新data_的資料,合併data與diff
template <typename Dtype>
void Blob<Dtype>::Update() {
// We will perform update based on where the data is located.
switch (data_->head()) {
case SyncedMemory::HEAD_AT_CPU:
// perform computation on CPU
// axpby即alpha * x plus beta *y 這個含義,blas的函式命名真是見名知意
// caffe_axpy計算的是Y=alpha * X + Y ,其中alpha=-1了這裡
// 儲存的時候用到了mutable_cpu_data,防止其他執行緒訪問
caffe_axpy<Dtype>(count_, Dtype(-1),
static_cast<const Dtype*>(diff_->cpu_data()),
static_cast<Dtype*>(data_->mutable_cpu_data()));
break;
case SyncedMemory::HEAD_AT_GPU:
case SyncedMemory::SYNCED:
#ifndef CPU_ONLY
// perform computation on GPU
caffe_gpu_axpy<Dtype>(count_, Dtype(-1),
static_cast<const Dtype*>(diff_->gpu_data()),
static_cast<Dtype*>(data_->mutable_gpu_data()));
#else
NO_GPU;
#endif
break;
default:
LOG(FATAL) << "Syncedmem not initialized.";
}
}
template <> unsigned int Blob<unsigned int>::asum_data() const {
NOT_IMPLEMENTED;
return 0;
}
template <> int Blob<int>::asum_data() const {
NOT_IMPLEMENTED;
return 0;
}
// 計算data的L1範數
// 呼叫math_function.hpp中的函式caffe_cpu_asum()和caffe_gpu_asum
// 實現求cpu_data或者gpu_data中每個元素絕對值的和
template <typename Dtype>
Dtype Blob<Dtype>::asum_data() const {
if (!data_) { return 0; }
switch (data_->head()) {
case SyncedMemory::HEAD_AT_CPU:
return caffe_cpu_asum(count_, cpu_data());
case SyncedMemory::HEAD_AT_GPU:
case SyncedMemory::SYNCED:
#ifndef CPU_ONLY
{
Dtype asum;
caffe_gpu_asum(count_, gpu_data(), &asum);
return asum;
}
#else
NO_GPU;
#endif
case SyncedMemory::UNINITIALIZED:
return 0;
default:
LOG(FATAL) << "Unknown SyncedMemory head state: " << data_->head();
}
return 0;
}
template <> unsigned int Blob<unsigned int>::asum_diff() const {
NOT_IMPLEMENTED;
return 0;
}
template <> int Blob<int>::asum_diff() const {
NOT_IMPLEMENTED;
return 0;
}
// 計算diff的L1範數
// 呼叫math_function.hpp中的函式caffe_cpu_asum()和caffe_gpu_asum
// 實現求cpu_diff或者gpu_diff中每個元素絕對值的和
template <typename Dtype>
Dtype Blob<Dtype>::asum_diff() const {
if (!diff_) { return 0; }
switch (diff_->head()) {
case SyncedMemory::HEAD_AT_CPU:
return caffe_cpu_asum(count_, cpu_diff());
case SyncedMemory::HEAD_AT_GPU:
case SyncedMemory::SYNCED:
#ifndef CPU_ONLY
{
Dtype asum;
caffe_gpu_asum(count_, gpu_diff(), &asum);
return asum;
}
#else
NO_GPU;
#endif
case SyncedMemory::UNINITIALIZED:
return 0;
default:
LOG(FATAL) << "Unknown SyncedMemory head state: " << diff_->head();
}
return 0;
}
template <> unsigned int Blob<unsigned int>::sumsq_data() const {
NOT_IMPLEMENTED;
return 0;
}
template <> int Blob<int>::sumsq_data() const {
NOT_IMPLEMENTED;
return 0;
}
// 計算sum of square of data(L2範數)
// 呼叫math_function.hpp中的中的函式caffe_cpu_dot(),caffe_cpu_strided_dot(),caffe_gpu_dot(), caffe_gpu_strided_dot()
// 實現求cpu_data或者gpu_data中每個元素絕對值的平方的和
template <typename Dtype>
Dtype Blob<Dtype>::sumsq_data() const {
Dtype sumsq;
const Dtype* data;
if (!data_) { return 0; }
switch (data_->head()) {
case SyncedMemory::HEAD_AT_CPU:
data = cpu_data();
sumsq = caffe_cpu_dot(count_, data, data);
break;
case SyncedMemory::HEAD_AT_GPU:
case SyncedMemory::SYNCED:
#ifndef CPU_ONLY
data = gpu_data();
caffe_gpu_dot(count_, data, data, &sumsq);
#else
NO_GPU;
#endif
break;
case SyncedMemory::UNINITIALIZED:
return 0;
default:
LOG(FATAL) << "Unknown SyncedMemory head state: " << data_->head();
}
return sumsq;
}
template <> unsigned int Blob<unsigned int>::sumsq_diff() const {
NOT_IMPLEMENTED;
return 0;
}
template <> int Blob<int>::sumsq_diff() const {
NOT_IMPLEMENTED;
return 0;
}
// 計算sum of square of diff(L2範數)
// 呼叫math_function.hpp中的中的函式caffe_cpu_dot(),caffe_cpu_strided_dot(),caffe_gpu_dot(), caffe_gpu_strided_dot()
// 實現求cpu_diff或者gpu_diff中每個元素絕對值的平方的和
template <typename Dtype>
Dtype Blob<Dtype>::sumsq_diff() const {
Dtype sumsq;
const Dtype* diff;
if (!diff_) { return 0; }
switch (diff_->head()) {
case SyncedMemory::HEAD_AT_CPU:
diff = cpu_diff();
sumsq = caffe_cpu_dot(count_, diff, diff);
break;
case SyncedMemory::HEAD_AT_GPU:
case SyncedMemory::SYNCED:
#ifndef CPU_ONLY
diff = gpu_diff();
caffe_gpu_dot(count_, diff, diff, &sumsq);
break;
#else
NO_GPU;
#endif
case SyncedMemory::UNINITIALIZED:
return 0;
default:
LOG(FATAL) << "Unknown SyncedMemory head state: " << data_->head();
}
return sumsq;
}
template <> void Blob<unsigned int>::scale_data(unsigned int scale_factor) {
NOT_IMPLEMENTED;
}
template <> void Blob<int>::scale_data(int scale_factor) {
NOT_IMPLEMENTED;
}
// 將data部分乘以一個因子scale_factor
template <typename Dtype>
void Blob<Dtype>::scale_data(Dtype scale_factor) {
Dtype* data;
if (!data_) { return; }
switch (data_->head()) {
case SyncedMemory::HEAD_AT_CPU:
data = mutable_cpu_data();
caffe_scal(count_, scale_factor, data);
return;
case SyncedMemory::HEAD_AT_GPU:
case SyncedMemory::SYNCED:
#ifndef CPU_ONLY
data = mutable_gpu_data();
caffe_gpu_scal(count_, scale_factor, data);
return;
#else
NO_GPU;
#endif
case SyncedMemory::UNINITIALIZED:
return;
default:
LOG(FATAL) << "Unknown SyncedMemory head state: " << data_->head();
}
}
template <> void Blob<unsigned int>::scale_diff(unsigned int scale_factor) {
NOT_IMPLEMENTED;
}
template <> void Blob<int>::scale_diff(int scale_factor) {
NOT_IMPLEMENTED;
}
// 將diff部分乘以一個因子sacle_factor
template <typename Dtype>
void Blob<Dtype>::scale_diff(Dtype scale_factor) {
Dtype* diff;
if (!diff_) { return; }
switch (diff_->head()) {
case SyncedMemory::HEAD_AT_CPU:
diff = mutable_cpu_diff();
caffe_scal(count_, scale_factor, diff);
return;
case SyncedMemory::HEAD_AT_GPU:
case SyncedMemory::SYNCED:
#ifndef CPU_ONLY
diff = mutable_gpu_diff();
caffe_gpu_scal(count_, scale_factor, diff);
return;
#else
NO_GPU;
#endif
case SyncedMemory::UNINITIALIZED:
return;
default:
LOG(FATAL) << "Unknown SyncedMemory head state: " << diff_->head();
}
}
//兩個blob的形狀是否一樣
template <typename Dtype>
bool Blob<Dtype>::ShapeEquals(const BlobProto& other) {
if (other.has_num() || other.has_channels() ||
other.has_height() || other.has_width()) {
// Using deprecated 4D Blob dimensions --
// shape is (num, channels, height, width).
// Note: we do not use the normal Blob::num(), Blob::channels(), etc.
// methods as these index from the beginning of the blob shape, where legacy
// parameter blobs were indexed from the end of the blob shape (e.g., bias
// Blob shape (1 x 1 x 1 x N), IP layer weight Blob shape (1 x 1 x M x N)).
return shape_.size() <= 4 &&
LegacyShape(-4) == other.num() &&
LegacyShape(-3) == other.channels() &&
LegacyShape(-2) == other.height() &&
LegacyShape(-1) == other.width();
}
// 如果不是舊的blob則直接判斷
vector<int> other_shape(other.shape().dim_size());
for (int i = 0; i < other.shape().dim_size(); ++i) {
other_shape[i] = other.shape().dim(i);
}
return shape_ == other_shape;
}
// 從別的blob進行復制
template <typename Dtype>
void Blob<Dtype>::CopyFrom(const Blob& source, bool copy_diff, bool reshape) {
if (source.count() != count_ || source.shape() != shape_) {
if (reshape) {
ReshapeLike(source);//複製shape資料
} else {
LOG(FATAL) << "Trying to copy blobs of different sizes.";
}
}
switch (Caffe::mode()) {
case Caffe::GPU:
// GPU複製diff
if (copy_diff) {
// 這都用 template <> void caffe_copy<float>(const int N, const float* X, float* Y) { cblas_scopy(N, X, 1, Y, 1); }
caffe_copy(count_, source.gpu_diff(),
static_cast<Dtype*>(diff_->mutable_gpu_data()));
} else {
caffe_copy(count_, source.gpu_data(),
static_cast<Dtype*>(data_->mutable_gpu_data()));
}
break;
// CPU複製diff
case Caffe::CPU:
if (copy_diff) {
caffe_copy(count_, source.cpu_diff(),
static_cast<Dtype*>(diff_->mutable_cpu_data()));
} else {
caffe_copy(count_, source.cpu_data(),
static_cast<Dtype*>(data_->mutable_cpu_data()));
}
break;
default:
LOG(FATAL) << "Unknown caffe mode.";
}
}
// 從定義在caffe.proto 中的一個message來複制資料
template <typename Dtype>
void Blob<Dtype>::FromProto(const BlobProto& proto, bool reshape) {
if (reshape) {
vector<int> shape;
if (proto.has_num() || proto.has_channels() ||
proto.has_height() || proto.has_width()) {
// Using deprecated 4D Blob dimensions --
// shape is (num, channels, height, width).
// 如果是舊的blob直接轉換為新的blob中的shape資料
shape.resize(4);
shape[0] = proto.num();
shape[1] = proto.channels();
shape[2] = proto.height();
shape[3] = proto.width();
} else {
shape.resize(proto.shape().dim_size());
for (int i = 0; i < proto.shape().dim_size(); ++i) {
shape[i] = proto.shape().dim(i);
}
}
Reshape(shape);// 複製shape資料到當前blob
} else {
CHECK(ShapeEquals(proto)) << "shape mismatch (reshape not set)";
}
// copy data
Dtype* data_vec = mutable_cpu_data();// 獲取當前的blob在記憶體上的資料指標,該指標是互斥的
if (proto.double_data_size() > 0) {
CHECK_EQ(count_, proto.double_data_size());
for (int i = 0; i < count_; ++i) {
data_vec[i] = proto.double_data(i);
}
} else {
CHECK_EQ(count_, proto.data_size());
for (int i = 0; i < count_; ++i) {
data_vec[i] = proto.data(i);
}
}
if (proto.double_diff_size() > 0) {
CHECK_EQ(count_, proto.double_diff_size());
Dtype* diff_vec = mutable_cpu_diff();// 獲取當前的diff在記憶體上的資料指標,該指標是互斥的
for (int i = 0; i < count_; ++i) {
diff_vec[i] = proto.double_diff(i);
}
} else if (proto.diff_size() > 0) {
CHECK_EQ(count_, proto.diff_size());
Dtype* diff_vec = mutable_cpu_diff();
for (int i = 0; i < count_; ++i) {
diff_vec[i] = proto.diff(i);
}
}
}
//將資料寫到proto
template <>
void Blob<double>::ToProto(BlobProto* proto, bool write_diff) const {
proto->clear_shape();
for (int i = 0; i < shape_.size(); ++i) {
proto->mutable_shape()->add_dim(shape_[i]);
}
proto->clear_double_data();
proto->clear_double_diff();
const double* data_vec = cpu_data();
for (int i = 0; i < count_; ++i) {
proto->add_double_data(data_vec[i]);//將data寫入proto
}
if (write_diff) {
const double* diff_vec = cpu_diff();
for (int i = 0; i < count_; ++i) {
proto->add_double_diff(diff_vec[i]);//將diff寫入proto
}
}
}
template <>
void Blob<float>::ToProto(BlobProto* proto, bool write_diff) const {
proto->clear_shape();
for (int i = 0; i < shape_.size(); ++i) {
proto->mutable_shape()->add_dim(shape_[i]);
}
proto->clear_data();
proto->clear_diff();
const float* data_vec = cpu_data();
for (int i = 0; i < count_; ++i) {
proto->add_data(data_vec[i]);
}
if (write_diff) {
const float* diff_vec = cpu_diff();
for (int i = 0; i < count_; ++i) {
proto->add_diff(diff_vec[i]);
}
}
}
INSTANTIATE_CLASS(Blob);
template class Blob<int>;
template class Blob<unsigned int>;
} // namespace caffe