tensorflow 模型的儲存與過載
阿新 • • 發佈:2018-12-11
import tensorflow as tf from tensorflow.examples.tutorials.mnist import input_data mnist = input_data.read_data_sets('MNIST_data',one_hot=True) batch_size = 100 n_batch = mnist.train.num_examples // batch_size x = tf.placeholder(tf.float32,[None,784]) y = tf.placeholder(tf.float32,[None,10]) W = tf.Variable(tf.zeros([784,10])) b = tf.Variable(tf.zeros([10])) prediction = tf.nn.softmax(tf.matmul(x,W)+b) loss = tf.reduce_mean(tf.nn.softmax_cross_entropy_with_logits(labels=y,logits=prediction)) train_step = tf.train.GradientDescentOptimizer(0.2).minimize(loss) init = tf.global_variables_initializer() correct_prediction = tf.equal(tf.argmax(y,1),tf.argmax(prediction,1)) accuracy = tf.reduce_mean(tf.cast(correct_prediction,tf.float32)) saver = tf.train.Saver() with tf.Session() as sess: sess.run(init) for epoch in range(11): for batch in range(n_batch): batch_xs,batch_ys = mnist.train.next_batch(batch_size) sess.run(train_step,feed_dict = {x:batch_xs,y:batch_ys}) acc = sess.run(accuracy,feed_dict={x:mnist.test.images,y:mnist.test.labels}) print('Iter'+str(epoch)+',testing accuracy '+str(acc)) saver.save(sess,'net/my_net.ckpt')
將訓練好的模型儲存到指定路徑
mnist = input_data.read_data_sets('MNIST_data',one_hot=True) batch_size = 100 n_batch = mnist.train.num_examples // batch_size x = tf.placeholder(tf.float32,[None,784]) y = tf.placeholder(tf.float32,[None,10]) W = tf.Variable(tf.zeros([784,10])) b = tf.Variable(tf.zeros([10])) prediction = tf.nn.softmax(tf.matmul(x,W)+b) loss = tf.reduce_mean(tf.nn.softmax_cross_entropy_with_logits(labels=y,logits=prediction)) train_step = tf.train.GradientDescentOptimizer(0.2).minimize(loss) init = tf.global_variables_initializer() correct_prediction = tf.equal(tf.argmax(y,1),tf.argmax(prediction,1)) accuracy = tf.reduce_mean(tf.cast(correct_prediction,tf.float32)) saver = tf.train.Saver() with tf.Session() as sess: sess.run(init) print(sess.run(accuracy,feed_dict={x:mnist.test.images,y:mnist.test.labels})) saver.restore(sess,'net/my_net.ckpt') print(sess.run(accuracy,feed_dict={x:mnist.test.images,y:mnist.test.labels}))
過載模型