快取在高併發場景下的常見問題 侵立刪
快取一致性問題
當資料時效性要求很高時,需要保證快取中的資料與資料庫中的保持一致,而且需要保證快取節點和副本中的資料也保持一致,不能出現差異現象。這就比較依賴快取的過期和更新策略。一般會在資料發生更改的時,主動更新快取中的資料或者移除對應的快取。
快取併發問題
快取過期後將嘗試從後端資料庫獲取資料,這是一個看似合理的流程。但是,在高併發場景下,有可能多個請求併發的去從資料庫獲取資料,對後端資料庫造成極大的衝擊,甚至導致 “雪崩”現象。此外,當某個快取key在被更新時,同時也可能被大量請求在獲取,這也會導致一致性的問題。那如何避免類似問題呢?我們會想到類似“鎖”的機制,在快取更新或者過期的情況下,先嚐試獲取到鎖,當更新或者從資料庫獲取完成後再釋放鎖,其他的請求只需要犧牲一定的等待時間,即可直接從快取中繼續獲取資料。
快取穿透問題
快取穿透在有些地方也稱為“擊穿”。很多朋友對快取穿透的理解是:由於快取故障或者快取過期導致大量請求穿透到後端資料庫伺服器,從而對資料庫造成巨大沖擊。
這其實是一種誤解。真正的快取穿透應該是這樣的:
在高併發場景下,如果某一個key被高併發訪問,沒有被命中,出於對容錯性考慮,會嘗試去從後端資料庫中獲取,從而導致了大量請求達到資料庫,而當該key對應的資料本身就是空的情況下,這就導致資料庫中併發的去執行了很多不必要的查詢操作,從而導致巨大沖擊和壓力。
可以通過下面的幾種常用方式來避免快取傳統問題:
1. 快取空物件
對查詢結果為空的物件也進行快取,如果是集合,可以快取一個空的集合(非null),如果是快取單個物件,可以通過欄位標識來區分。這樣避免請求穿透到後端資料庫。同時,也需要保證快取資料的時效性。這種方式實現起來成本較低,比較適合命中不高,但可能被頻繁更新的資料。
2. 單獨過濾處理
對所有可能對應資料為空的key進行統一的存放,並在請求前做攔截,這樣避免請求穿透到後端資料庫。這種方式實現起來相對複雜,比較適合命中不高,但是更新不頻繁的資料。
快取顛簸問題
快取的顛簸問題,有些地方可能被成為“快取抖動”,可以看做是一種比“雪崩”更輕微的故障,但是也會在一段時間內對系統造成衝擊和效能影響。一般是由於快取節點故障導致。業內推薦的做法是通過一致性Hash演算法來解決。這裡不做過多闡述,可以參照其他章節
快取的雪崩現象
快取雪崩就是指由於快取的原因,導致大量請求到達後端資料庫,從而導致資料庫崩潰,整個系統崩潰,發生災難。導致這種現象的原因有很多種,上面提到的“快取併發”,“快取穿透”,“快取顛簸”等問題,其實都可能會導致快取雪崩現象發生。這些問題也可能會被惡意攻擊者所利用。還有一種情況,例如某個時間點內,系統預載入的快取週期性集中失效了,也可能會導致雪崩。為了避免這種週期性失效,可以通過設定不同的過期時間,來錯開快取過期,從而避免快取集中失效。
從應用架構角度,我們可以通過限流、降級、熔斷等手段來降低影響,也可以通過多級快取來避免這種災難。
此外,從整個研發體系流程的角度,應該加強壓力測試,儘量模擬真實場景,儘早的暴露問題從而防範。
快取無底洞現象
該問題由 facebook 的工作人員提出的, facebook 在 2010 年左右,memcached 節點就已經達3000 個,快取數千 G 內容。
他們發現了一個問題---memcached 連線頻率,效率下降了,於是加 memcached 節點,添加了後,發現因為連線頻率導致的問題,仍然存在,並沒有好轉,稱之為”無底洞現象”。
目前主流的資料庫、快取、Nosql、搜尋中介軟體等技術棧中,都支援“分片”技術,來滿足“高效能、高併發、高可用、可擴充套件”等要求。有些是在client端通過Hash取模(或一致性Hash)將值對映到不同的例項上,有些是在client端通過範圍取值的方式對映的。當然,也有些是在服務端進行的。但是,每一次操作都可能需要和不同節點進行網路通訊來完成,例項節點越多,則開銷會越大,對效能影響就越大。
主要可以從如下幾個方面避免和優化:
1. 資料分佈方式
有些業務資料可能適合Hash分佈,而有些業務適合採用範圍分佈,這樣能夠從一定程度避免網路IO的開銷。
2. IO優化
可以充分利用連線池,NIO等技術來儘可能降低連線開銷,增強併發連線能力。
3. 資料訪問方式
一次性獲取大的資料集,會比分多次去獲取小資料集的網路IO開銷更小。
當然,快取無底洞現象並不常見。在絕大多數的公司裡可能根本不會遇到。