Least Common Multiple
The least common multiple (LCM) of a set of positive integers is the smallest positive integer which is divisible by all the numbers in the set. For example, the LCM of 5, 7 and 15 is 105.
Input Input will consist of multiple problem instances. The first line of the input will contain a single integer indicating the number of problem instances. Each instance will consist of a single line of the form m n1 n2 n3 … nm where m is the number of integers in the set and n1 … nm are the integers. All integers will be positive and lie within the range of a 32-bit integer. Output For each problem instance, output a single line containing the corresponding LCM. All results will lie in the range of a 32-bit integer. Sample Input 2 3 5 7 15 6 4 10296 936 1287 792 1 Sample Output 105 10296
這個題是求幾個數的最小公倍數,但是本質上是求這幾個數的最大公約數。因為最小公倍數就是兩個數的乘積除以這兩個數的最大公約數。記得用long long 型別,在這裡wa了兩次。 程式碼如下:
#include<iostream> #include<cstdio> #include<cstring> #include<cmath> #define ll long long using namespace std; const int maxx=1e6+10; ll gcd(ll x,ll y)//歐幾里得求最大公約數(輾轉相除法) { if(y==0) return x; else return gcd(y,x%y); } ll n; ll a[maxx]; int main() { int t; while(cin>>t) { while(t--) { cin>>n; for(int i=0;i<n;i++) { cin>>a[i]; } int ans=a[0]; for(int i=1;i<n;i++) { int cnt=gcd(ans,a[i]); ans=ans*a[i]/cnt; } cout<<ans<<endl; } } }
努力加油a啊,(o)/~