loj#2020. 「AHOI / HNOI2017」禮物
阿新 • • 發佈:2018-12-14
題意:給定xy陣列求
\(\sum_{i=0}^{n-1}(x_i+y_{(i+k)%n}+c)^2\)
題解:先化簡可得
\(n*c^2+2*\sum_{i=0}^{n-1}x_i-y_i+\sum_{i=0}^{n-1}x_i^2+y_i^2-2*\sum_{i=0}x_i*y_{(i+k)%n}\)
主要問題是求最後一項的最大值,把x反過來重複一遍即可fft,相當於\(2*n...n...1\)和\(1....n\)fft,第2*n+1項到n+2項就是不斷平移的答案
//#pragma GCC optimize(2) //#pragma GCC optimize(3) //#pragma GCC optimize(4) //#pragma GCC optimize("unroll-loops") //#pragma comment(linker, "/stack:200000000") //#pragma GCC optimize("Ofast,no-stack-protector") //#pragma GCC target("sse,sse2,sse3,ssse3,sse4,popcnt,abm,mmx,avx,tune=native") #include<bits/stdc++.h> #define fi first #define se second #define db double #define mp make_pair #define pb push_back #define pi acos(-1.0) #define ll long long #define vi vector<int> #define mod 998244353 #define ld long double //#define C 0.5772156649 #define ls l,m,rt<<1 #define rs m+1,r,rt<<1|1 #define pll pair<ll,ll> #define pil pair<int,ll> #define pli pair<ll,int> #define pii pair<int,int> #define ull unsigned long long //#define base 1000000000000000000 #define fin freopen("a.txt","r",stdin) #define fout freopen("a.txt","w",stdout) #define fio ios::sync_with_stdio(false);cin.tie(0) inline ll gcd(ll a,ll b){return b?gcd(b,a%b):a;} inline void sub(ll &a,ll b){a-=b;if(a<0)a+=mod;} inline void add(ll &a,ll b){a+=b;if(a>=mod)a-=mod;} template<typename T>inline T const& MAX(T const &a,T const &b){return a>b?a:b;} template<typename T>inline T const& MIN(T const &a,T const &b){return a<b?a:b;} inline ll qp(ll a,ll b){ll ans=1;while(b){if(b&1)ans=ans*a%mod;a=a*a%mod,b>>=1;}return ans;} inline ll qp(ll a,ll b,ll c){ll ans=1;while(b){if(b&1)ans=ans*a%c;a=a*a%c,b>>=1;}return ans;} using namespace std; const ull ba=233; const db eps=1e-8; const ll INF=0x3f3f3f3f3f3f3f3f; const int N=100000+10,maxn=200000+10,inf=0x3f3f3f3f; struct cd{ db x,y; cd(db _x=0.0,db _y=0.0):x(_x),y(_y){} cd operator +(const cd &b)const{ return cd(x+b.x,y+b.y); } cd operator -(const cd &b)const{ return cd(x-b.x,y-b.y); } cd operator *(const cd &b)const{ return cd(x*b.x - y*b.y,x*b.y + y*b.x); } cd operator /(const db &b)const{ return cd(x/b,y/b); } }x[N<<3],y[N<<3]; int rev[N<<3]; void getrev(int bit) { for(int i=0;i<(1<<bit);i++) rev[i]=(rev[i>>1]>>1) | ((i&1)<<(bit-1)); } void fft(cd *a,int n,int dft) { for(int i=0;i<n;i++) if(i<rev[i]) swap(a[i],a[rev[i]]); for(int step=1;step<n;step<<=1) { cd wn(cos(dft*pi/step),sin(dft*pi/step)); for(int j=0;j<n;j+=step<<1) { cd wnk(1,0); for(int k=j;k<j+step;k++) { cd x=a[k]; cd y=wnk*a[k+step]; a[k]=x+y;a[k+step]=x-y; wnk=wnk*wn; } } } if(dft==-1)for(int i=0;i<n;i++)a[i]=a[i]/n; } int a[N],b[N]; int main() { int n,m; scanf("%d%d",&n,&m); int sz=0; while((1<<sz)<2*n)sz++,sz++; getrev(sz); int ans=0,bb=0; for(int i=1;i<=n;i++)scanf("%d",&a[i]),x[n+1-i].x=x[2*n+1-i].x=a[i],ans+=a[i]*a[i],bb+=2*a[i]; for(int i=1;i<=n;i++)scanf("%d",&b[i]),y[i].x=b[i],ans+=b[i]*b[i],bb-=2*b[i]; int c=-bb/(2*n); ans+=min(min(n*c*c+bb*c,n*(c+1)*(c+1)+bb*(c+1)),n*(c-1)*(c-1)+bb*(c-1)); fft(x,(1<<sz),1);fft(y,(1<<sz),1); for(int i=0;i<(1<<sz);i++)x[i]=x[i]*y[i]; fft(x,(1<<sz),-1); int ma=0; for(int i=n+2;i<=2*n+1;i++)ma=max(ma,(int)(x[i].x+0.5));//,printf("%d\n",(int)(x[i].x+0.5)); printf("%d\n",ans-2*ma); return 0; } /******************** ********************/