1. 程式人生 > >sparkStreaming:實時流計算Java案例

sparkStreaming:實時流計算Java案例

現在,網上基於spark的程式碼基本上都是Scala,很多書上也都是基於Scala,沒辦法,誰叫spark是Scala寫出來的了,但是我現在還沒系統的學習Scala,所以只能用java寫spark程式了,spark支援java,而且Scala也基於JVM,不說了,直接上程式碼

這是官網上給出的例子,大資料學習中經典案例單詞計數  在linux下一個終端 輸入 $ nc -lk 9999

然後執行下面的程式碼

package com.tg.spark.stream;

import java.util.Arrays;

import org.apache.spark.*;
import org.apache.spark.api.java.function.*;
import org.apache.spark.streaming.*;
import org.apache.spark.streaming.api.java.*;
import scala.Tuple2;
/**
 * 
 * @author 湯高
 *
 */
public class SparkStream {
    public static void main(String[] args) {

        // Create a local StreamingContext with two working thread and batch
        // interval of 1 second
        SparkConf conf = new SparkConf().setMaster("local[4]").setAppName("NetworkWordCount").set("spark.testing.memory",
                "2147480000");
        JavaStreamingContext jssc = new JavaStreamingContext(conf, Durations.seconds(1));
        System.out.println(jssc);

        // Create a DStream that will connect to hostname:port, like
        // localhost:9999
        JavaReceiverInputDStream<String> lines = jssc.socketTextStream("master", 9999);
        //JavaDStream<String> lines = jssc.textFileStream("hdfs://master:9000/stream");

        // Split each line into words
        JavaDStream<String> words = lines.flatMap(new FlatMapFunction<String, String>() {
            @Override
            public Iterable<String> call(String x) {
                System.out.println(Arrays.asList(x.split(" ")).get(0));
                return Arrays.asList(x.split(" "));
            }
        });


        // Count each word in each batch
        JavaPairDStream<String, Integer> pairs = words.mapToPair(new PairFunction<String, String, Integer>() {
            @Override
            public Tuple2<String, Integer> call(String s) {
                return new Tuple2<String, Integer>(s, 1);
            }
        });
        System.out.println(pairs);
        JavaPairDStream<String, Integer> wordCounts = pairs.reduceByKey(new Function2<Integer, Integer, Integer>() {
            @Override
            public Integer call(Integer i1, Integer i2) {
                return i1 + i2;
            }
        });

        // Print the first ten elements of each RDD generated in this DStream to
        // the console

        wordCounts.print();
        //wordCounts.saveAsHadoopFiles("hdfs://master:9000/testFile/", "spark", new Text(), new IntWritable(), JavaPairDStream<Text,IntWritable>());
        wordCounts.dstream().saveAsTextFiles("hdfs://master:9000/testFile/", "spark");
        //wordCounts.saveAsHadoopFiles("hdfs://master:9000/testFile/", "spark",Text,IntWritable);
        //System.out.println(wordCounts.count());
        jssc.start(); 
        //System.out.println(wordCounts.count());// Start the computation
        jssc.awaitTermination();   // Wait for the computation to terminate
    }

}

然後再剛剛的終端輸入 hello world

# TERMINAL 1: # Running Netcat

$ nc -lk 9999

hello world

就可以通過控制檯看到

------------------------------------------- Time: 1357008430000 ms ------------------------------------------- (hello,1) (world,1) ... 並且hdfs上也可以看到通過計算生成的實時檔案

第二個案例是,不是通過socketTextStream套接字,而是直接通過hdfs上的某個檔案目錄來作為輸入資料來源

package com.tg.spark.stream;

import java.util.Arrays;

import org.apache.spark.*;
import org.apache.spark.api.java.function.*;
import org.apache.spark.streaming.*;
import org.apache.spark.streaming.api.java.*;
import scala.Tuple2;
/**
 * 
 * @author 湯高
 *
 */
public class SparkStream2 {
    public static void main(String[] args) {

        // Create a local StreamingContext with two working thread and batch
        // interval of 1 second
        SparkConf conf = new SparkConf().setMaster("local[4]").setAppName("NetworkWordCount").set("spark.testing.memory",
                "2147480000");
        JavaStreamingContext jssc = new JavaStreamingContext(conf, Durations.seconds(1));
        System.out.println(jssc);

        // Create a DStream that will connect to hostname:port, like
        // localhost:9999
        //JavaReceiverInputDStream<String> lines = jssc.socketTextStream("master", 9999);
        JavaDStream<String> lines = jssc.textFileStream("hdfs://master:9000/stream");

        // Split each line into words
        JavaDStream<String> words = lines.flatMap(new FlatMapFunction<String, String>() {
            @Override
            public Iterable<String> call(String x) {
                System.out.println(Arrays.asList(x.split(" ")).get(0));
                return Arrays.asList(x.split(" "));
            }
        });


        // Count each word in each batch
        JavaPairDStream<String, Integer> pairs = words.mapToPair(new PairFunction<String, String, Integer>() {
            @Override
            public Tuple2<String, Integer> call(String s) {
                return new Tuple2<String, Integer>(s, 1);
            }
        });
        System.out.println(pairs);
        JavaPairDStream<String, Integer> wordCounts = pairs.reduceByKey(new Function2<Integer, Integer, Integer>() {
            @Override
            public Integer call(Integer i1, Integer i2) {
                return i1 + i2;
            }
        });

        // Print the first ten elements of each RDD generated in this DStream to
        // the console

        wordCounts.print();
        //wordCounts.saveAsHadoopFiles("hdfs://master:9000/testFile/", "spark", new Text(), new IntWritable(), JavaPairDStream<Text,IntWritable>());
        wordCounts.dstream().saveAsTextFiles("hdfs://master:9000/testFile/", "spark");
        //wordCounts.saveAsHadoopFiles("hdfs://master:9000/testFile/", "spark",Text,IntWritable);
        //System.out.println(wordCounts.count());
        jssc.start(); 
        //System.out.println(wordCounts.count());// Start the computation
        jssc.awaitTermination();   // Wait for the computation to terminate
    }

}

這樣就存在埠一直在監控你的那個目錄,只要它有檔案生成,就會馬上讀取到它裡面的內容,你可以先執行程式,然後手動新增一個檔案到剛剛的目錄,就可以看到輸出結果了