1. 程式人生 > >人臉識別常用資料集介紹

人臉識別常用資料集介紹

人臉識別常用資料集大全(12/20更新)

人臉識別常用資料集大全(12/20更新)

原文首發地址:人臉識別常用資料集大全(12/20更新) - 極市部落格

 

1.PubFig: Public Figures Face Database(哥倫比亞大學公眾人物臉部資料庫)

The PubFig database is a large, real-world face dataset consisting of 58,797 images of 200 people collected from the internet. Unlike most other existing face datasets, these images are taken in completely uncontrolled situations with non-cooperative subjects.

這是哥倫比亞大學的公眾人物臉部資料集,包含有200個人的58k+人臉影象,主要用於非限制場景下的人臉識別。

 

2.Large-scale CelebFaces Attributes (CelebA) Dataset

CelebFaces Attributes Dataset (CelebA) is a large-scale face attributes dataset with more than 200K celebrity images, each with 40 attribute annotations. The images in this dataset cover large pose variations and background clutter. CelebA has large diversities, large quantities, and rich annotations, including

10,177 number of identities,

202,599 number of face images, and

5 landmark locations, 40 binary attributes annotations per image.

這是由香港中文大學湯曉鷗教授實驗室公佈的大型人臉識別資料集。該資料集包含有200K張人臉圖片,人臉屬性有40多種,主要用於人臉屬性的識別。

 

3.Colorferet

The database is used to develop, test, and evaluate face recognition.

為促進人臉識別演算法的研究和實用化,美國國防部的Counterdrug Technology Transfer Program(CTTP)發起了一個人臉識別技術(Face Recognition Technology 簡稱FERET)工程,它包括了一個通用人臉庫以及通用測試標準。到1997年,它已經包含了1000多人的10000多張照片,每個人包括了不同表情,光照,姿態和年齡的照片。

 

4.Multi-Task Facial Landmark (MTFL) dataset

This dataset contains 12,995 face images collected from the Internet. The images are annotated with (1) five facial landmarks, (2) attributes of gender, smiling, wearing glasses, and head pose.

該資料集包含了將近13000張人臉圖片,均採自網路。

 

5.BioID Face Database - FaceDB

1521 images with human faces, recorded under natural conditions, i.e. varying illumination and complex background. The eye positions have been set manually.

這個資料集包含了1521幅解析度為384x286畫素的灰度影象。 每一幅影象來自於23個不同的測試人員的正面角度的人臉。為了便於做比較,這個資料集也包含了對人臉影象對應的手工標註的人眼位置檔案。 影象以 "BioID_xxxx.pgm"的格式命名,其中xxxx代表當前影象的索引(從0開始)。類似的,形如"BioID_xxxx.eye"的檔案包含了對應影象中眼睛的位置。

 

6.Labeled Faces in the Wild Home (LFW)

More than 13,000 images of faces collected from the web. Each face has been labeled with the name of the person pictured. 1680 of the people pictured have two or more distinct photos in the data set.

LFW資料集是為了研究非限制環境下的人臉識別問題而建立的。這個資料集包含超過13,000張人臉影象,均採集於Internet。

每個人臉均被標準了一個人名。其中,大約1680個人包含兩個以上的人臉。

這個集合被廣泛應用於評價Face Verification演算法的效能。

 

7.Person identification in TV series

Face tracks, features and shot boundaries from our latest CVPR 2013 paper. It is obtained from 6 episodes of Buffy the Vampire Slayer and 6 episodes of Big Bang Theory.

該資料集所選用的人臉照片均來自於兩部比較知名的電視劇,《吸血鬼獵人巴菲》和《生活大爆炸》。

 

8.CMUVASC & PIE Face dataset

The face datasets were provided by the face reserch group at CMU.

CMU PIE人臉庫建立於2000年11月,它包括來自68個人的40000張照片,其中包括了每個人的13種姿態條件,43種光照條件和4種表情下的照片,現有的多姿態人臉識別的文獻基本上都是在CMU PIE人臉庫上測試的。

 

9.YouTube Faces

The data set contains 3,425 videos of 1,595 different people. The shortest clip duration is 48 frames, the longest clip is 6,070 frames, and the average length of a video clip is 181.3 frames.

YouTube Video Faces是用來做人臉驗證的。在這個資料集下,演算法需要判斷兩段視訊裡面是不是同一個人。有不少在照片上有效的方法,在視訊上未必有效/高效。

 

10.CASIA-FaceV5

CASIA Face Image Database Version 5.0 (or CASIA-FaceV5) contains 2,500 color facial images of 500 subjects.

該資料集包含了來自500個人的2500張亞洲人臉圖片.

 

11.The CNBC Face Database

This database includes multiple images for over 200 individuals of many different races with consistent lighting, multiple views, real emotions, and disguises (and some participants returned for a second session several weeks later with a haircut, or a new beard, etc.).

該資料集採集了200個人在不同狀態下(不同的神情,裝扮,髮型等)的人臉照片。

 

12.CASIA-3D FaceV1

4624 scans of 123 persons using the non-contact 3D digitizer, Minolta Vivid 910, as shown in figure.

該資料集包含了來自123個人的4624張人臉圖片,所有圖片均由下圖的儀器進行拍攝。

 

13.IMDB-WIKI

In total we obtained 460,723 face images from 20,284 celebrities from IMDb and 62,328 from Wikipedia, thus 523,051 in total.

IMDB-WIKI人臉資料庫是有IMDB資料庫和Wikipedia資料庫組成,其中IMDB人臉資料庫包含了460,723張人臉圖片,而Wikipedia人臉資料庫包含了62,328張人臉資料庫,總共523,051張人臉資料庫,IMDB-WIKI人臉資料庫中的每張圖片都被標註了人的年齡和性別,對於年齡識別和性別識別的研究有著重要的意義。

 

14.FDDB

A data set of face regions designed for studying the problem of unconstrained face detection. This data set contains the annotations for 5171 faces in a set of 2845 images taken from the Faces in the Wild data set.

FDDB是UMass的資料集,被用來做人臉檢測(Face Detection)。這個資料集比較大,比較有挑戰性。而且作者提供了程式用來評估檢測結果,所以在這個資料上面比較演算法也相對公平。

15.Caltech人臉資料庫

The dataset contains images of people collected from the web by typing common given names into Google Image Search. The coordinates of the eyes, the nose and the center of the mouth for each frontal face are provided in a ground truth file. This information can be used to align and crop the human faces or as a ground truth for a face detection algorithm. The dataset has 10,524 human faces of various resolutions and in different settings, e.g. portrait images, groups of people, etc. Profile faces or very low resolution faces are not labeled.

10k+人臉,提供雙眼和嘴巴的座標位置

 

16.The Japanese Female Facial Expression (JAFFE) Database

The database contains 213 images of 7 facial expressions (6 basic facial expressions + 1 neutral) posed by 10 Japanese female models. Each image has been rated on 6 emotion adjectives by 60 Japanese subjects. The database was planned and assembled by Michael Lyons, Miyuki Kamachi, and Jiro Gyoba. We thank Reiko Kubota for her help as a research assistant. The photos were taken at the Psychology Department in Kyushu University.

該資料庫是由10位日本女性在實驗環境下根據指示做出各種表情,再由照相機拍攝獲取的人臉表情影象。整個資料庫一共有213張影象,10個人,全部都是女性,每個人做出7種表情,這7種表情分別是: sad, happy, angry, disgust, surprise, fear, neutral. 每個人為一組,每一組都含有7種表情,每種表情大概有3,4張樣圖。

 

 

所有的人臉識別資料集打包下載連結:

密碼:4xlk

 

        分類: python 好文要頂 關注我 收藏該文 ayew
關注 - 2
粉絲 - 20 +加關注 1 0 « 上一篇: 用 opencv和numpy進行圖片和字串互轉,並儲存至 json
» 下一篇: 發現了一個非常棒的pyqt5的例子集
	</div>
	<div class="postDesc">posted @ <span id="post-date">2017-12-28 19:24</span> <a href="https://www.cnblogs.com/ansang/">ayew</a> 閱讀(<span id="post_view_count">11137</span>) 評論(<span id="post_comment_count">0</span>)  <a href="https://i.cnblogs.com/EditPosts.aspx?postid=8137413" rel="nofollow">編輯</a> <a href="#" onclick="AddToWz(8137413);return false;">收藏</a></div>
</div>
<script type="text/javascript">var allowComments=true,cb_blogId=391889,cb_entryId=8137413,cb_blogApp=currentBlogApp,cb_blogUserGuid='769160e1-9ff3-4426-5369-08d4ef52ecb6',cb_entryCreatedDate='2017/12/28 19:24:00';loadViewCount(cb_entryId);var cb_postType=1;</script>