1. 程式人生 > >Elasticsearch基礎入門

Elasticsearch基礎入門

本文以 Elasticsearch 5.6.2為例。

最新(截止到2018-09-23)的 Elasticsearch 是 6.4.1。5.x系列和6.x系列雖然有些區別,但基本用法是一樣的。

官方文件: https://www.elastic.co/guide/en/elasticsearch/reference/5.6/

安裝

安裝比較簡單。分兩步:

  • 配置JDK環境
  • 安裝Elasticsearch

Elasticsearch 依賴 JDK環境,需要系統先下載安裝 JDK 並配置 JAVA_HOME 環境變數。JDK 版本推薦:1.8.0系列。地址:https://www.oracle.com/technetwork/java/javase/downloads/jdk8-downloads-2133151.html

安裝JDk

Linux:

$ yum install -y java-1.8.0-openjdk

配置環境變數,需要修改/etc/profile, 增加:

JAVA_HOME=/usr/lib/jvm/java-1.8.0-openjdk-1.8.0.181-3.b13.el6_10.x86_64
PATH=$JAVA_HOME/bin:$PATH
CLASSPATH=.:$JAVA_HOME/lib/dt.jar:$JAVA_HOME/lib/tools.jar
JAVACMD=/usr/bin/java
export JAVA_HOME JAVACMD CLASSPATH PATH

然後使之生效:

source /etc/profile

Windows:

安裝包地址: http://download.oracle.com/otn-pub/java/jdk/8u191-b12/2787e4a523244c269598db4e85c51e0c/jdk-8u191-windows-x64.exe

下載並配置JDK環境變數

JAVA_HOME=C:\Program Files\Java\jdk1.8.0_101

CLASSPATH=.;%JAVA_HOME%\lib;.;%JAVA_HOME%\lib\dt.jar;%JAVA_HOME%\lib\tools.jar;

安裝Elasticsearch

Elasticsearch 安裝只需要下載二進位制壓縮包包,解壓即可使用。需要特別注意的是版本號,如果還要安裝Kibana及外掛,需要注意選用一樣的版本號。

安裝包下載:https://artifacts.elastic.co/downloads/elasticsearch/elasticsearch-5.6.2.tar.gz

這個頁面有 Elasticsearch 所有版本的下載:https://www.elastic.co/downloads/past-releases

下載後解壓到指定目錄,進入到 bin 目錄,就可以執行 Elasticsearch 了: Linux:

./elasticsearch

Windows:

elasticsearch.bat

注: Linux/Mac環境不能使用 root 使用者執行。

基礎入門

我們可以使用curl或者kibana提供的Dev Tools進行API測試。

例如: curl方式:

curl 'localhost:9200/_cat/health?format=json'

[{"epoch":"1537689647","timestamp":"16:00:47","cluster":"elasticsearch","status":"yellow","node.total":"1","node.data":"1","shards":"11","pri":"11","relo":"0","init":"0","unassign":"11","pending_tasks":"0","max_task_wait_time":"-","active_shards_percent":"50.0%"}]

Dev Tools:

GET /_cat/health?format=json

個人比較喜歡Kibana提供的Dev Tools,非常方便。

檢視_cat命令:

GET _cat
=^.^=
/_cat/allocation
/_cat/shards
/_cat/shards/{index}
/_cat/master
/_cat/nodes
/_cat/tasks
/_cat/indices
/_cat/indices/{index}
/_cat/segments
/_cat/segments/{index}
/_cat/count
/_cat/count/{index}
/_cat/recovery
/_cat/recovery/{index}
/_cat/health
/_cat/pending_tasks
/_cat/aliases
/_cat/aliases/{alias}
/_cat/thread_pool
/_cat/thread_pool/{thread_pools}
/_cat/plugins
/_cat/fielddata
/_cat/fielddata/{fields}
/_cat/nodeattrs
/_cat/repositories
/_cat/snapshots/{repository}
/_cat/templates

以下測試均在Dev Tools執行。

節點操作

檢視健康狀態

GET /_cat/health?format=json

結果:

[
  {
    "epoch": "1537689915",
    "timestamp": "16:05:15",
    "cluster": "elasticsearch",
    "status": "yellow",
    "node.total": "1",
    "node.data": "1",
    "shards": "11",
    "pri": "11",
    "relo": "0",
    "init": "0",
    "unassign": "11",
    "pending_tasks": "0",
    "max_task_wait_time": "-",
    "active_shards_percent": "50.0%"
  }
]

健康狀態有3種:

  • Green - 正常(叢集功能齊全)
  • Yellow - 所有資料均可用,但尚未分配一些副本(群集功能齊全)
  • Red - 某些資料由於某種原因不可用(群集部分功能可用)

注意:當群集為紅色時,它將繼續提供來自可用分片的搜尋請求,但您可能需要儘快修復它,因為存在未分配的分片。

檢視節點

GET /_cat/nodes?format=json

索引

檢視所有index

GET /_cat/indices?format=json

結果:

[
  {
    "health": "yellow",
    "status": "open",
    "index": "filebeat-2018.09.23",
    "uuid": "bwWVhUkBTIe46h9QJfmZHw",
    "pri": "5",
    "rep": "1",
    "docs.count": "4231",
    "docs.deleted": "0",
    "store.size": "2.5mb",
    "pri.store.size": "2.5mb"
  },
  {
    "health": "yellow",
    "status": "open",
    "index": ".kibana",
    "uuid": "tnWbNLSMT7273UEh6RfcBg",
    "pri": "1",
    "rep": "1",
    "docs.count": "4",
    "docs.deleted": "0",
    "store.size": "23.9kb",
    "pri.store.size": "23.9kb"
  }
]

建立index

PUT /customer?pretty

刪除index

DELETE /customer?pretty

查詢指定 Index 的 mapping

GET /customer/_mapping?pretty

注:ElasticSearch裡面有 indextype 的概念:index稱為索引,type為文件型別,一個index下面有多個type,每個type的欄位可以不一樣。這類似於關係型資料庫的 database 和 table 的概念。但是,ES中不同type下名稱相同的filed最終在Lucene中的處理方式是一樣的。所以後來ElasticSearch團隊想去掉type,於是在6.x版本為了向下相容,一個index只允許有一個type。預計7.x版本徹底去掉type。參考:https://www.elastic.co/guide/en/elasticsearch/reference/current/removal-of-types.html

所以,實際使用中建議一個index裡面僅有一個type,名稱可以和index一致,或者使用固定的doc

增刪改查

按ID新增資料

type為doc:

PUT /customer/doc/1?pretty
{
  "name": "John Doe"
}
PUT /customer/doc/2?pretty
{
  "name": "yujc",
  "age":22
}

如果index不存在,直接新增資料也會同時建立index。

同時,該操作也能修改資料:

PUT /customer/doc/2?pretty
{
  "name": "yujc",
  "age":23
}

age欄位會被修改,而且_version會被修改為2:

{
  "_index": "customer",
  "_type": "doc",
  "_id": "1",
  "_version": 2,
  "result": "updated",
  "_shards": {
    "total": 2,
    "successful": 1,
    "failed": 0
  },
  "created": false
}

按ID查詢資料

GET /customer/doc/1?pretty

結果:

{
  "_index": "customer",
  "_type": "doc",
  "_id": "1",
  "_version": 2,
  "found": true,
  "_source": {
    "name": "John Doe"
  }
}

直接新增資料

我們也可以不指定文件ID從而直接新增資料:

POST /customer/doc?pretty
{
  "name": "yujc",
  "age":23
}

注意這裡使用的動作是POSTPUT新增資料必須指定文件ID。

更新資料

我們使用下面兩種方式均能更新已有資料:

PUT /customer/doc/1?pretty
{
  "name": "yujc2",
  "age":22
}

POST /customer/doc/1?pretty
{
  "name": "yujc2",
  "age":22
}

以上操作均會覆蓋現有資料。

如果只是想更新指定欄位,必須使用POST加引數的形式:

POST /customer/doc/1/_update?pretty
{
  "doc":{"name": "yujc"}
}

其中_update表示更新。doc必須有,否則會報錯。

增加欄位:

POST /customer/doc/1/_update?pretty
{
  "doc":{"yeat": 2018}
}

就會在已有的資料基礎上增加一個year欄位,不會覆蓋已有資料:

GET /customer/doc/1?pretty

結果:

{
  "_index": "customer",
  "_type": "doc",
  "_id": "1",
  "_version": 16,
  "found": true,
  "_source": {
    "name": "yujc",
    "age": 22,
    "yeat": 2018
  }
}

也可以使用簡單指令碼執行更新。此示例使用指令碼將年齡增加5:

POST /customer/doc/1/_update?pretty
{
  "script":"ctx._source.age+=5"
}

結果:

{
  "_index": "customer",
  "_type": "doc",
  "_id": "1",
  "_version": 17,
  "found": true,
  "_source": {
    "name": "yujc",
    "age": 27,
    "yeat": 2018
  }
}

按ID刪除資料

DELETE /customer/doc/1?pretty

批量

新增

POST /customer/doc/_bulk?pretty
{"index":{"_id":"1"}}
{"name": "John Doe" }
{"index":{"_id":"2"}}
{"name": "Jane Doe" }

該操作會新增2條記錄,而不是4條。查詢資料:

GET /customer/doc/2?pretty

結果:

{
  "_index": "customer",
  "_type": "doc",
  "_id": "2",
  "_version": 2,
  "found": true,
  "_source": {
    "name": "Jane Doe"
  }
}

更新、刪除

POST /customer/doc/_bulk?pretty
{"update":{"_id":"1"}}
{"doc": { "name": "John Doe becomes Jane Doe" } }
{"delete":{"_id":"2"}}

該操作會更新ID為1的文件,刪除ID為2的文件。

注意:批量操作如果某條失敗了,並不影響下一條繼續執行。

全文檢索

經過前面的基礎入門,我們對ES的基本操作也會了。現在來學習ES最強大的部分:全文檢索。

準備工作

批量匯入資料

先需要準備點資料,然後匯入:

wget https://raw.githubusercontent.com/elastic/elasticsearch/master/docs/src/test/resources/accounts.json

curl -H "Content-Type: application/json" -XPOST "localhost:9200/bank/account/_bulk?pretty&refresh" --data-binary "@accounts.json"

這樣我們就匯入了1000條資料到ES。index是bank。我們可以檢視現在有哪些index:

curl "localhost:9200/_cat/indices?format=json&pretty"

結果:

[
  {
    "health" : "yellow",
    "status" : "open",
    "index" : "bank",
    "uuid" : "IhyOzz3WTFuO5TNgPJUZsw",
    "pri" : "5",
    "rep" : "1",
    "docs.count" : "1000",
    "docs.deleted" : "0",
    "store.size" : "640.3kb",
    "pri.store.size" : "640.3kb"
  },
  {
    "health" : "yellow",
    "status" : "open",
    "index" : "customer",
    "uuid" : "f_nzBLypSUK2SVjL2AoKxQ",
    "pri" : "5",
    "rep" : "1",
    "docs.count" : "9",
    "docs.deleted" : "0",
    "store.size" : "31kb",
    "pri.store.size" : "31kb"
  },
  {
    "health" : "yellow",
    "status" : "open",
    "index" : ".kibana",
    "uuid" : "tnWbNLSMT7273UEh6RfcBg",
    "pri" : "1",
    "rep" : "1",
    "docs.count" : "5",
    "docs.deleted" : "0",
    "store.size" : "29.4kb",
    "pri.store.size" : "29.4kb"
  }
]

使用kibana視覺化資料

該小節是可選的,如果不感興趣,可以跳過。

該小節要求你已經搭建好了ElasticSearch + Kibana。

開啟kibana web地址:http://127.0.0.1:5601,依次開啟:Management -> Kibana -> Index Patterns ,選擇Create Index Pattern

a. Index pattern 輸入:bank

b. 點選Create。

然後開啟Discover,選擇 bank 就能看到剛才匯入的資料了。

我們在視覺化介面裡檢索資料:

是不是很酷!

接下來我們使用API來實現檢索。

關鍵字檢索

模糊檢索

GET /bank/_search?q="Virginia"&pretty

解釋:檢索關鍵字為"Virginia"的結果。結果示例:

{
  "took": 4,
  "timed_out": false,
  "_shards": {
    "total": 5,
    "successful": 5,
    "skipped": 0,
    "failed": 0
  },
  "hits": {
    "total": 2,
    "max_score": 4.631368,
    "hits": [
      {
        "_index": "bank",
        "_type": "account",
        "_id": "298",
        "_score": 4.631368,
        "_source": {
          "account_number": 298,
          "balance": 34334,
          "firstname": "Bullock",
          "lastname": "Marsh",
          "age": 20,
          "gender": "M",
          "address": "589 Virginia Place",
          "employer": "Renovize",
          "email": "[email protected]",
          "city": "Coinjock",
          "state": "UT"
        }
      },
      {
        "_index": "bank",
        "_type": "account",
        "_id": "25",
        "_score": 4.6146765,
        "_source": {
          "account_number": 25,
          "balance": 40540,
          "firstname": "Virginia",
          "lastname": "Ayala",
          "age": 39,
          "gender": "F",
          "address": "171 Putnam Avenue",
          "employer": "Filodyne",
          "email": "[email protected]",
          "city": "Nicholson",
          "state": "PA"
        }
      }
    ]
  }
}

返回欄位含義:

  • took – Elasticsearch執行搜尋的時間(以毫秒為單位)
  • timed_out – 搜尋是否超時
  • _shards – 搜尋了多少個分片,以及搜尋成功/失敗分片的計數
  • hits – 搜尋結果,是個物件
  • hits.total – 符合我們搜尋條件的文件總數
  • hits.hits – 實際的搜尋結果陣列(預設為前10個文件)
  • hits.sort - 對結果進行排序(如果按score排序則沒有該欄位)
  • hits._score、max_score - 暫時忽略這些欄位
GET /bank/_search?q=*&sort=account_number:asc&pretty

解釋:所有結果通過account_number欄位升序排列。預設只返回前10條。

下面的查詢與上面的含義一致:

GET /bank/_search
{
  "query": {
        "multi_match" : {
            "query" : "Virginia",
            "fields" : ["_all"]
        }
    }
}

GET /bank/_search
{
  "query": { "match_all": {} },
  "sort": [
    { "account_number": "asc" }
  ]
}

通常我們會採用傳JSON方式查詢。Elasticsearch提供了一種JSON樣式的特定於域的語言,可用於執行查詢。這被稱為查詢DSL。

注意:上述的查詢裡面我們僅指定了index,並沒有指定type,那麼ES將不會區分type。如果想區分,請在URI後面追加type。示例:GET /bank/account/_search

欄位檢索

再看按欄位查詢:

GET /bank/_search
{
  "query": {
        "multi_match" : {
            "query" : "Virginia",
            "fields" : ["firstname"]
        }
    }
}

GET /bank/_search
{
  "query": {
        "match" : {
            "firstname" : "Virginia"
        }
    }
}

上面2種查詢是等效的,都是查詢firstnameVirginia的結果。

不分詞

預設檢索都是分詞的,如果我們希望精確匹配,可以這樣實現:

GET /bank/_search
{
  "query": {
        "match" : {
            "address.keyword" : "171 Putnam Avenue"
        }
    }
}

在欄位後面加上.keyword表示不分詞,使用精確匹配。大家可以測試下面2種查詢結果的區別:

GET /bank/_search
{
  "query": {
        "match" : {
            "address" : "Putnam"
        }
    }
}

GET /bank/_search
{
  "query": {
        "match" : {
            "address.keyword" : "Putnam"
        }
    }
}

第二種將查不到任何結果。

分頁

分頁使用關鍵字from、size,分別表示偏移量、分頁大小。

GET /bank/_search
{
  "query": { "match_all": {} },
  "from": 0,
  "size": 2
}

from預設是0,size預設是10。

欄位排序

欄位排序關鍵字是sort。支援升序(asc)、降序(desc)。

GET /bank/_search
{
  "query": { "match_all": {} },
  "sort": [
    { "account_number": "asc" }
  ],
  "from":0,
  "size":10
}

過濾欄位

預設情況下,ES返回所有欄位。這被稱為源(_source搜尋命中中的欄位)。如果我們不希望返回所有欄位,我們可以只請求返回源中的幾個欄位。

GET /bank/_search
{
  "query": { "match_all": {} },
  "_source": ["account_number", "balance"]
}

通過_source關鍵字可以實現欄位過濾。

AND查詢

如果我們想同時查詢符合A和B欄位的結果,該怎麼查呢?可以使用must關鍵字組合。

GET /bank/_search
{
  "query": {
    "bool": {
      "must": [
        { "match": { "address": "mill" } },
        { "match": { "address": "lane" } }
      ]
    }
  }
}


GET /bank/_search
{
  "query": {
    "bool": {
      "must": [
        { "match": { "account_number":136 } },
        { "match": { "address": "lane" } },
        { "match": { "city": "Urie" } }
      ]
    }
  }
}

must也等價於:

GET /bank/_search
{
  "query": {
    "bool": {
      "must": [
        { "match": { "address": "mill" } }
      ],
      "must": [
        { "match": { "address": "lane" } }
      ]
    }
  }
}

這種相當於先查詢A再查詢B,而上面的則是同時查詢符合A和B,但結果是一樣的,執行效率可能有差異。有知道原因的朋友可以告知。

OR查詢

ES使用should關鍵字來實現OR查詢。

GET /bank/_search
{
  "query": {
    "bool": {
      "should": [
        { "match": { "account_number":136 } },
        { "match": { "address": "lane" } },
        { "match": { "city": "Urie" } }
      ]
    }
  }
}

AND取反查

must_not關鍵字實現了既不包含A也不包含B的查詢。

GET /bank/_search
{
  "query": {
    "bool": {
      "must_not": [
        { "match": { "address": "mill" } },
        { "match": { "address": "lane" } }
      ]
    }
  }

表示 address 欄位需要符合既不包含 mill 也不包含 lane。

布林組合查詢

我們可以組合 must 、should 、must_not 進行復雜的查詢。

  • A AND NOT B
GET /bank/_search
{
  "query": {
    "bool": {
      "must": [
        { "match": { "age": 40 } }
      ],
      "must_not": [
        { "match": { "state": "ID" } }
      ]
    }
  }
}

相當於SQL:

select * from bank where age=40 and state!= "ID";
  • A AND (B OR C)
GET /bank/_search
{
    "query":{
        "bool":{
            "must":[
                {"match":{"age":39}},
                {"bool":{"should":[
                            {"match":{"city":"Nicholson"}},
                            {"match":{"city":"Yardville"}}
                        ]}
                }
            ]
        }
    }
}

相當於SQL:

select * from bank where age=39 and (city="Nicholson" or city="Yardville");

範圍查詢

GET /bank/_search
{
  "query": {
    "bool": {
      "must": { "match_all": {} },
      "filter": {
        "range": {
          "balance": {
            "gte": 20000,
            "lte": 30000
          }
        }
      }
    }
  }
}

相當於SQL:

select * from bank where balance between 20000 and 30000;

聚合查詢

GET /bank/_search
{
  "size": 0,
  "aggs": {
    "group_by_state": {
      "terms": {
        "field": "state.keyword"
      }
    }
  }
}

結果:

{
  "took": 29,
  "timed_out": false,
  "_shards": {
    "total": 5,
    "successful": 5,
    "skipped" : 0,
    "failed": 0
  },
  "hits" : {
    "total" : 1000,
    "max_score" : 0.0,
    "hits" : [ ]
  },
  "aggregations" : {
    "group_by_state" : {
      "doc_count_error_upper_bound": 20,
      "sum_other_doc_count": 770,
      "buckets" : [ {
        "key" : "ID",
        "doc_count" : 27
      }, {
        "key" : "TX",
        "doc_count" : 27
      }, {
        "key" : "AL",
        "doc_count" : 25
      }, {
        "key" : "MD",
        "doc_count" : 25
      }, {
        "key" : "TN",
        "doc_count" : 23
      }, {
        "key" : "MA",
        "doc_count" : 21
      }, {
        "key" : "NC",
        "doc_count" : 21
      }, {
        "key" : "ND",
        "doc_count" : 21
      }, {
        "key" : "ME",
        "doc_count" : 20
      }, {
        "key" : "MO",
        "doc_count" : 20
      } ]
    }
  }
}

查詢結果返回了ID州(Idaho)有27個賬戶,TX州(Texas)有27個賬戶。

相當於SQL:

SELECT state, COUNT(*) FROM bank GROUP BY state ORDER BY COUNT(*) DESC

該查詢意思是按照欄位state分組,返回前10個聚合結果。

其中size設定為0意思是不返回文件內容,僅返回聚合結果。state.keyword表示欄位精確匹配,因為使用模糊匹配效能很低,所以不支援。

多重聚合

我們可以在聚合的基礎上再進行聚合,例如求和、求平均值等等。

GET /bank/_search
{
  "size": 0,
  "aggs": {
    "group_by_state": {
      "terms": {
        "field": "state.keyword"
      },
      "aggs": {
        "average_balance": {
          "avg": {
            "field": "balance"
          }
        }
      }
    }
  }
}

上述查詢實現了在前一個聚合的基礎上,按州計算平均帳戶餘額(同樣僅針對按降序排序的前10個州)。

我們可以在聚合中任意巢狀聚合,以從資料中提取所需的統計資料。

在前一個聚合的基礎上,我們現在按降序排列平均餘額:

GET /bank/_search
{
  "size": 0,
  "aggs": {
    "group_by_state": {
      "terms": {
        "field": "state.keyword",
        "order": {
          "average_balance": "desc"
        }
      },
      "aggs": {
        "average_balance": {
          "avg": {
            "field": "balance"
          }
        }
      }
    }
  }
}

這裡基於第二個聚合結果進行倒序排列。其實上一個例子隱藏了預設排序,也就是預設按照_sort(分值)倒序:

GET /bank/_search
{
  "size": 0,
  "aggs": {
    "group_by_state": {
      "terms": {
        "field": "state.keyword",
        "order": {
          "_sort": "desc"
        }
      },
      "aggs": {
        "average_balance": {
          "avg": {
            "field": "balance"
          }
        }
      }
    }
  }
}

此示例演示了我們如何按年齡段(20-29歲,30-39歲和40-49歲)進行分組,然後按性別分組,最後得到每個年齡段的平均帳戶餘額:

GET /bank/_search
{
  "size": 0,
  "aggs": {
    "group_by_age": {
      "range": {
        "field": "age",
        "ranges": [
          {
            "from": 20,
            "to": 30
          },
          {
            "from": 30,
            "to": 40
          },
          {
            "from": 40,
            "to": 50
          }
        ]
      },
      "aggs": {
        "group_by_gender": {
          "terms": {
            "field": "gender.keyword"
          },
          "aggs": {
            "average_balance": {
              "avg": {
                "field": "balance"
              }
            }
          }
        }
      }
    }
  }
}

這個結果就複雜了,屬於巢狀分組,結果也是巢狀的:

{
  "took": 5,
  "timed_out": false,
  "_shards": {
    "total": 5,
    "successful": 5,
    "skipped": 0,
    "failed": 0
  },
  "hits": {
    "total": 1000,
    "max_score": 0,
    "hits": []
  },
  "aggregations": {
    "group_by_age": {
      "buckets": [
        {
          "key": "20.0-30.0",
          "from": 20,
          "to": 30,
          "doc_count": 451,
          "group_by_gender": {
            "doc_count_error_upper_bound": 0,
            "sum_other_doc_count": 0,
            "buckets": [
              {
                "key": "M",
                "doc_count": 232,
                "average_balance": {
                  "value": 27374.05172413793
                }
              },
              {
                "key": "F",
                "doc_count": 219,
                "average_balance": {
                  "value": 25341.260273972603
                }
              }
            ]
          }
        },
        {
          "key": "30.0-40.0",
          "from": 30,
          "to": 40,
          "doc_count": 504,
          "group_by_gender": {
            "doc_count_error_upper_bound": 0,
            "sum_other_doc_count": 0,
            "buckets": [
              {
                "key": "F",
                "doc_count": 253,
                "average_balance": {
                  "value": 25670.869565217392
                }
              },
              {
                "key": "M",
                "doc_count": 251,
                "average_balance": {
                  "value": 24288.239043824702
                }
              }
            ]
          }
        },
        {
          "key": "40.0-50.0",
          "from": 40,
          "to": 50,
          "doc_count": 45,
          "group_by_gender": {
            "doc_count_error_upper_bound": 0,
            "sum_other_doc_count": 0,
            "buckets": [
              {
                "key": "M",
                "doc_count": 24,
                "average_balance": {
                  "value": 26474.958333333332
                }
              },
              {
                "key": "F",
                "doc_count": 21,
                "average_balance": {
                  "value": 27992.571428571428
                }
              }
            ]
          }
        }
      ]
    }
  }
}

term與match查詢

首先大家看下面的例子有什麼區別:

已知條件:ES裡address171 Putnam Avenue的資料有1條;addressPutnam的資料有0條。index為bank,type為account,文件ID為25。

GET /bank/_search
{
  "query": {
        "match" : {
            "address" : "Putnam"
        }
    }
}

GET /bank/_search
{
  "query": {
        "match" : {
            "address.keyword" : "Putnam"
        }
    }
}

GET /bank/_search
{
  "query": {
        "term" : {
            "address" : "Putnam"
        }
    }
}

結果: 1、第一個能匹配到資料,因為會分詞查詢。 2、第二個不能匹配到資料,因為不分詞的話沒有該條資料。 3、結果不確定。需要看實際是怎麼分詞的。

我們通過下列查詢可以知曉該條資料欄位address的分詞情況:

GET /bank/account/25/_termvectors?fields=address

結果:

{
  "_index": "bank",
  "_type": "account",
  "_id": "25",
  "_version": 1,
  "found": true,
  "took": 0,
  "term_vectors": {
    "address": {
      "field_statistics": {
        "sum_doc_freq": 591,
        "doc_count": 197,
        "sum_ttf": 591
      },
      "terms": {
        "171": {
          "term_freq": 1,
          "tokens": [
            {
              "position": 0,
              "start_offset": 0,
              "end_offset": 3
            }
          ]
        },
        "avenue": {
          "term_freq": 1,
          "tokens": [
            {
              "position": 2,
              "start_offset": 11,
              "end_offset": 17
            }
          ]
        },
        "putnam": {
          "term_freq": 1,
          "tokens": [
            {
              "position": 1,
              "start_offset": 4,
              "end_offset": 10
            }
          ]
        }
      }
    }
  }
}

可以看出該條資料欄位address一共分了3個詞:

171
avenue
putnam

現在可以得出第三個查詢的答案:匹配不到!但值改成小寫的putnam又能匹配到了!

原因是:

  • term query 查詢的是倒排索引中確切的term
  • match query 會對filed進行分詞操作,然後再查詢

由於Putnam不在分詞裡(大小寫敏感),所以匹配不到。match query先對filed進行分詞,也就是分成putnam,再去匹配倒排索引中的term,所以能匹配到。

standard analyzer 分詞器分詞預設會將大寫字母全部轉為小寫字母。

參考

1、Getting Started | Elasticsearch Reference [5.6] | Elastic https://www.elastic.co/guide/en/elasticsearch/reference/5.6/getting-started.html 2、Elasticsearch 5.x 關於term query和match query的認識 - wangchuanfu - 部落格園 https://www.cnblogs.com/wangchuanfu/p/7444253.html