千里之行始於足下
阿新 • • 發佈:2018-12-16
– Start
import numpy as np
# 什麼是矩陣(matrix)?
a = np.array([ [1, 2],
[3, 4] ])
b = np.array([ [-1, -2],
[-3, -4] ])
# 矩陣加法
c = a + b
print(f'a + b = {c}')
# 矩陣減法
c = a - b
print(f'a - b = {c}')
import numpy as np # 定義矩陣 a = np.array([ [1, 2], [3, 4] ]) b = np.array([ [-1, -2], [-3, -4] ]) # 矩陣乘法 (行*列) # [[(1*-1 + 2*-3), (1*-2 + 2*-4)], # [(3*-1 + 4*-3), (3*-2 + 4*-4)]] c = a @ b print(c)
import numpy as np # 單位矩陣(identity matrix) a = np.identity(3) b = np.eye(3) print('單位矩陣') print(a) # 逆矩陣(inverse matrix) c = np.array([ [1, 2], [3, 4] ]) # d = 1 / (1*4 - 2*3) * np.array([ [4, -2], # [-3, 1] ]) d = np.linalg.inv(c) print('矩陣 c') print(c) print('c 的逆矩陣') print(d) # 矩陣 * 逆矩陣 = 單位矩陣 e = c @ d e = np.round(e, 2) print('矩陣 * 逆矩陣') print(e)
– 聲 明:轉載請註明出處 – Last Updated on 2018-10-22 – Written by ShangBo on 2018-10-22 – End