1. 程式人生 > >JDK原始碼分析系列--ConcurrentHashMap(1.8)

JDK原始碼分析系列--ConcurrentHashMap(1.8)

定義變數

    /**
     * node陣列最大容量
     */
    private static final int MAXIMUM_CAPACITY = 1 << 30;

    /**
     * 預設容量
     */
    private static final int DEFAULT_CAPACITY = 16;

    /**
     * 陣列可能最大值,需要與toArray()相關方法關聯
     */
    static final int MAX_ARRAY_SIZE = Integer.MAX_VALUE - 8;

    /**
     * 併發級別,遺留下來的,相容以前的版本
     */
    private static final int DEFAULT_CONCURRENCY_LEVEL = 16;

    /**
     * 負載因子
     */
    private static final float LOAD_FACTOR = 0.75f;

    /**
     * 連結串列轉紅黑樹的閥值
     */
    static final int TREEIFY_THRESHOLD = 8;

    /**
     * 紅黑樹轉化為連結串列的閥值
     */
    static final int UNTREEIFY_THRESHOLD = 6;

    /**
     * 連結串列轉化紅黑樹最小的node陣列大小
     */
    static final int MIN_TREEIFY_CAPACITY = 64;

    private static final int MIN_TRANSFER_STRIDE = 16;

    private static int RESIZE_STAMP_BITS = 16;

    /**
     * help resize的最大執行緒數
     */
    private static final int MAX_RESIZERS = (1 << (32 - RESIZE_STAMP_BITS)) - 1;

    /**
     * sizeCtl中記錄size大小的偏移量
     */
    private static final int RESIZE_STAMP_SHIFT = 32 - RESIZE_STAMP_BITS;

    static final int MOVED     = -1; // forwarding nodes的hash值

    static final int TREEBIN   = -2; // 樹節點hash值

    static final int RESERVED  = -3; // ReservationNode 的hash值
    
    /**
     * Node陣列
     */
    transient volatile Node<K,V>[] table;
    
    /**
     * 用來控制表初始化和擴容的,預設值為0,當在初始化的時候指定了大小,這會將這個大小儲存在sizeCtl中,大小為陣列的0.75            
     * 當為負的時候,說明表正在初始化或擴張, -1表示初始化,-(1+n) n:表示活動的擴張執行緒
     */
    private transient volatile int sizeCtl;

構造方法

    /**
     * sizeCtl的值為初始容量的1.5倍initialCapacity+1後計算table的大小,
     * 如initialCapacity=10,向上取2的倍數是16,
     * initialCapacity=11,向上取2的倍數是32
     */
    public ConcurrentHashMap(int initialCapacity) {
        if (initialCapacity < 0)
            throw new IllegalArgumentException();
        int cap = ((initialCapacity >= (MAXIMUM_CAPACITY >>> 1)) ?
                   MAXIMUM_CAPACITY :
                   tableSizeFor(initialCapacity + (initialCapacity >>> 1) + 1));
        this.sizeCtl = cap;
    }

計算陣列容量

    /**
     * 陣列容量計算,c向上取2點倍數,如果c的值為10,則返回16,如果c為17則返回32,以此類推
     */
    private static final int tableSizeFor(int c) {
        int n = c - 1;
        n |= n >>> 1;
        n |= n >>> 2;
        n |= n >>> 4;
        n |= n >>> 8;
        n |= n >>> 16;
        return (n < 0) ? 1 : (n >= MAXIMUM_CAPACITY) ? MAXIMUM_CAPACITY : n + 1;
    }

PUT方法分析

    public V put(K key, V value) {
        return putVal(key, value, false);
    }

    /** 
     * put 核心
     */
    final V putVal(K key, V value, boolean onlyIfAbsent) {
        //當key或value為null丟擲空指向異常
        if (key == null || value == null) throw new NullPointerException();
        //計算key的hash值
        int hash = spread(key.hashCode());
        //用於記錄連結串列的長度
        int binCount = 0;
        for (Node<K,V>[] tab = table;;) {
            Node<K,V> f; int n, i, fh;
            if (tab == null || (n = tab.length) == 0)//node陣列為空時初始化
                tab = initTable();
            //計算陣列下標,並把值賦給首節點f,當f為空時
            else if ((f = tabAt(tab, i = (n - 1) & hash)) == null) {
                //做cas操作,如果成功,put結束,如果不成功,說明有併發存在,進入下一輪迴圈
                if (casTabAt(tab, i, null,
                             new Node<K,V>(hash, key, value, null)))
                    break;                   
            }
            //f的hash值為MOVED,說明正在擴容
            else if ((fh = f.hash) == MOVED)
                //幫助資料遷移
                tab = helpTransfer(tab, f);
            else {//如果走在這裡,那說明首節點f不為空
                V oldVal = null;
                synchronized (f) {//獲取陣列下標首節點f的鎖
                    if (tabAt(tab, i) == f) {
                        //首節點的hash值大於0,說明是連結串列
                        if (fh >= 0) {
                            binCount = 1;//記錄連結串列的長度
                            for (Node<K,V> e = f;; ++binCount) {
                                K ek;
                                //key值相等時的操作
                                if (e.hash == hash &&
                                    ((ek = e.key) == key ||
                                     (ek != null && key.equals(ek)))) {
                                    oldVal = e.val;
                                    if (!onlyIfAbsent)
                                        e.val = value;
                                    break;
                                }
                                Node<K,V> pred = e;
                                //將該節點放到連結串列的最末端
                                if ((e = e.next) == null) {
                                    pred.next = new Node<K,V>(hash, key,
                                                              value, null);
                                    break;
                                }
                            }
                        }
                        else if (f instanceof TreeBin) {//當f節點為紅黑樹
                            Node<K,V> p;
                            binCount = 2;
                            if ((p = ((TreeBin<K,V>)f).putTreeVal(hash, key,
                                                           value)) != null) {
                                oldVal = p.val;
                                if (!onlyIfAbsent)
                                    p.val = value;
                            }
                        }
                    }
                }
                if (binCount != 0) {
                    //當連結串列長度大於等於連結串列轉紅黑樹的轉化因子
                    if (binCount >= TREEIFY_THRESHOLD)
                        treeifyBin(tab, i);
                    if (oldVal != null)
                        return oldVal;
                    break;
                }
            }
        }
        addCount(1L, binCount);
        return null;
    }

初始化Node陣列

    private final Node<K,V>[] initTable() {
        Node<K,V>[] tab; int sc;
        while ((tab = table) == null || tab.length == 0) {
            if ((sc = sizeCtl) < 0)//sizeCtl<0說明被其他執行緒搶佔了鎖
                Thread.yield(); 
            //搶佔了鎖,cas操作一下,將SIZECTL設定為-1
            else if (U.compareAndSwapInt(this, SIZECTL, sc, -1)) {
                try {
                    if ((tab = table) == null || tab.length == 0) {
                        //將n賦值為預設容量16
                        int n = (sc > 0) ? sc : DEFAULT_CAPACITY;
                        Node<K,V>[] nt = (Node<K,V>[])new Node<?,?>[n];
                        table = tab = nt;
                        sc = n - (n >>> 2);//sc為12
                    }
                } finally {
                    sizeCtl = sc;
                }
                break;
            }
        }
        return tab;
    }

連結串列轉紅黑樹

    private final void treeifyBin(Node<K,V>[] tab, int index) {
        Node<K,V> b; int n, sc;
        if (tab != null) {
            //當node陣列長度小於64時,則進行陣列擴容操作
            if ((n = tab.length) < MIN_TREEIFY_CAPACITY)
                tryPresize(n << 1);
            //首節點b
            else if ((b = tabAt(tab, index)) != null && b.hash >= 0) {
                synchronized (b) {//對b加鎖
                    if (tabAt(tab, index) == b) {
                        //遍歷連結串列,構建紅黑樹
                        TreeNode<K,V> hd = null, tl = null;
                        for (Node<K,V> e = b; e != null; e = e.next) {
                            TreeNode<K,V> p =
                                new TreeNode<K,V>(e.hash, e.key, e.val,
                                                  null, null);
                            if ((p.prev = tl) == null)
                                hd = p;
                            else
                                tl.next = p;
                            tl = p;
                        }
                        //將紅黑樹放到陣列該下標位置
                        setTabAt(tab, index, new TreeBin<K,V>(hd));
                    }
                }
            }
        }
    }

資料遷移方法

    private final void transfer(Node<K,V>[] tab, Node<K,V>[] nextTab) {
        int n = tab.length, stride;
        // stride 在單核下直接等於 n,多核模式下為 (n>>>3)/NCPU,最小值是 16
        // stride 可以理解為”步長“,有 n 個位置是需要進行遷移的
        // 將這 n 個任務分為多個任務包,每個任務包有 stride 個任務
        if ((stride = (NCPU > 1) ? (n >>> 3) / NCPU : n) < MIN_TRANSFER_STRIDE)
            stride = MIN_TRANSFER_STRIDE; 
        if (nextTab == null) {            
            try {
                // 容量翻倍
                Node<K,V>[] nt = (Node<K,V>[])new Node<?,?>[n << 1];
                nextTab = nt;
            } catch (Throwable ex) {      // try to cope with OOME
                sizeCtl = Integer.MAX_VALUE;
                return;
            }
            nextTable = nextTab;
            //transferIndex 也是 ConcurrentHashMap 的屬性,用於控制遷移的位置
            transferIndex = n;
        }
        int nextn = nextTab.length;
        //正在被遷移的 Node,hash值設定為MOVED
        ForwardingNode<K,V> fwd = new ForwardingNode<K,V>(nextTab);
        //advance 指的是做完了一個位置的遷移工作,可以準備做下一個位置的了
        boolean advance = true;
        boolean finishing = false; 
        
        //i是陣列的索引位置,bound是邊界
        for (int i = 0, bound = 0;;) {
            Node<K,V> f; int fh;
            while (advance) {
                int nextIndex, nextBound;
                if (--i >= bound || finishing)
                    advance = false;
                else if ((nextIndex = transferIndex) <= 0) {
                    i = -1;
                    advance = false;
                }
                else if (U.compareAndSwapInt
                         (this, TRANSFERINDEX, nextIndex,
                          nextBound = (nextIndex > stride ?
                                       nextIndex - stride : 0))) {
                    bound = nextBound;
                    i = nextIndex - 1;
                    advance = false;
                }
            }
            if (i < 0 || i >= n || i + n >= nextn) {
                int sc;
                if (finishing) {//所有遷移已經完成
                    nextTable = null;
                    table = nextTab;
                    sizeCtl = (n << 1) - (n >>> 1);
                    return;
                }
                //cas操作對sizeCtl-1,完成自己的任務
                if (U.compareAndSwapInt(this, SIZECTL, sc = sizeCtl, sc - 1)) {
                    if ((sc - 2) != resizeStamp(n) << RESIZE_STAMP_SHIFT)
                        return;
                    finishing = advance = true;
                    i = n; 
                }
            }
            //如果索引位置為空,則放入剛剛初始化的ForwardingNode節點
            else if ((f = tabAt(tab, i)) == null)
                advance = casTabAt(tab, i, null, fwd);
            else if ((fh = f.hash) == MOVED)//代表位置已經遷移過了
                advance = true; 
            else {
                synchronized (f) {//對資料首節點加鎖,處理該位置的遷移工作
                    if (tabAt(tab, i) == f) {
                        Node<K,V> ln, hn;
                        if (fh >= 0) {//連結串列節點
                            int runBit = fh & n;
                            Node<K,V> lastRun = f;
                            for (Node<K,V> p = f.next; p != null; p = p.next) {
                                int b = p.hash & n;
                                if (b != runBit) {
                                    runBit = b;
                                    lastRun = p;
                                }
                            }
                            if (runBit == 0) {
                                ln = lastRun;
                                hn = null;
                            }
                            else {
                                hn = lastRun;
                                ln = null;
                            }
                            for (Node<K,V> p = f; p != lastRun; p = p.next) {
                                int ph = p.hash; K pk = p.key; V pv = p.val;
                                if ((ph & n) == 0)
                                    ln = new Node<K,V>(ph, pk, pv, ln);
                                else
                                    hn = new Node<K,V>(ph, pk, pv, hn);
                            }
                            //ln連結串列節點放到陣列i位置
                            setTabAt(nextTab, i, ln);
                            //hn連結串列節點放到陣列i+n位置
                            setTabAt(nextTab, i + n, hn);
                            //願陣列位置i上設定為fwd,說明已經遷移完
                            setTabAt(tab, i, fwd);
                            //該位置遷移完成
                            advance = true;
                        }
                        else if (f instanceof TreeBin) {
                            TreeBin<K,V> t = (TreeBin<K,V>)f;
                            TreeNode<K,V> lo = null, loTail = null;
                            TreeNode<K,V> hi = null, hiTail = null;
                            int lc = 0, hc = 0;
                            for (Node<K,V> e = t.first; e != null; e = e.next) {
                                int h = e.hash;
                                TreeNode<K,V> p = new TreeNode<K,V>
                                    (h, e.key, e.val, null, null);
                                if ((h & n) == 0) {
                                    if ((p.prev = loTail) == null)
                                        lo = p;
                                    else
                                        loTail.next = p;
                                    loTail = p;
                                    ++lc;
                                }
                                else {
                                    if ((p.prev = hiTail) == null)
                                        hi = p;
                                    else
                                        hiTail.next = p;
                                    hiTail = p;
                                    ++hc;
                                }
                            }
                            ln = (lc <= UNTREEIFY_THRESHOLD) ? untreeify(lo) :
                                (hc != 0) ? new TreeBin<K,V>(lo) : t;
                            hn = (hc <= UNTREEIFY_THRESHOLD) ? untreeify(hi) :
                                (lc != 0) ? new TreeBin<K,V>(hi) : t;
                            setTabAt(nextTab, i, ln);
                            setTabAt(nextTab, i + n, hn);
                            setTabAt(tab, i, fwd);
                            advance = true;
                        }
                    }
                }
            }
        }
    }