神經網路模型的儲存和讀取(基於Mnist資料集)
阿新 • • 發佈:2018-12-17
#Import MNIST data from tensorflow.examples.tutorials.mnist import input_data mnist = input_data.read_data_sets("data/",one_hot=True) import tensorflow as tf #Parameters learning_rate = 0.001 batch_size = 100 display_step = 1 model_path = "save/model.ckpt" #Network Parameters n_hidden_1 = 256 #1st layer number of features n_hidden_2 = 256 #2nd layer number of features n_input = 784 #MNIST data input (img shape:28*28) n_classes = 10 #MNIST total classes (0-9 digits) #tf Graph input x = tf.placeholder("float",[None,n_input]) y = tf.placeholder("float",[None,n_classes]) #Creat model def mutilayer_perceptron(x,weights,biases): #Hidden layer with RELU activation layer_1 = tf.add(tf.matmul(x,weights['h1']),biases['b1']) layer_1 = tf.nn.relu(layer_1) #Hidden layer with RELU activation layer_2 = tf.add(tf.matmul(layer_1,weights['h2']),biases['b2']) layer_2 = tf.nn.relu(layer_2) #Output layer with linear activation out_layer = tf.matmul(layer_2,weights['out']) + biases['out'] return out_layer #Store layers weight & bias weights = { 'h1': tf.Variable(tf.random_normal([n_input,n_hidden_1])), 'h2': tf.Variable(tf.random_normal([n_hidden_1,n_hidden_2])), 'out': tf.Variable(tf.random_normal([n_hidden_2,n_classes])) } biases = { 'b1': tf.Variable(tf.random_normal([n_hidden_1])), 'b2': tf.Variable(tf.random_normal([n_hidden_2])), 'out': tf.Variable(tf.random_normal([n_classes])) } #Construct model pred = mutilayer_perceptron(x,weights,biases) #Define loss and optimizer cost = tf.reduce_mean(tf.nn.softmax_cross_entropy_with_logits(logits=pred,labels=y)) optimizer = tf.train.AdamOptimizer(learning_rate=learning_rate).minimize(cost) #Initializing the variables init = tf.initializers.global_variables() #saver 儲存模型 saver = tf.train.Saver() print("執行第一個Session...") with tf.Session() as sess: sess.run(init) #Training cycle for epoch in range(3): avg_cost = 0 total_batch = int(mnist.train.num_examples/batch_size) #Loop over all batches for i in range(total_batch): batch_x,batch_y = mnist.train.next_batch(batch_size) #Run optimization op (backrop) and cost op (to get loss value) _, c = sess.run([optimizer,cost],feed_dict={x:batch_x,y:batch_y}) #Compute average loss avg_cost += c / total_batch #Display logs per epoch step if epoch % display_step == 0: print("Epoch:",'%04d' % (epoch+1),"cost=","{:.9f}".format(avg_cost)) print("第一次執行完成") #儲存模型的權重和偏移量 save_path = saver.save(sess,model_path) print ("檔案儲存在:%s" % save_path ) print("執行第二個Session...") with tf.Session() as sess: sess.run(init) #Restore model weights from previously saved model load_path = saver.restore(sess,model_path) print("提取模型目錄:%s" % save_path) #Resume training for epoch in range(7): avg_cost = 0 total_batch = int(mnist.train.num_examples/batch_size) #Loop over all batches for i in range(total_batch): batch_x,batch_y = mnist.train.next_batch(batch_size) #Run optimization op (backrop) and cost op (to get loss value) _, c = sess.run([optimizer,cost],feed_dict={x:batch_x,y:batch_y}) #Compute average loss avg_cost += c / total_batch #Display logs per epoch step if epoch % display_step == 0: print("Epoch:",'%04d' % (epoch+1),"cost=","{:.9f}".format(avg_cost)) print ("檔案儲存在:%s" % save_path )