1. 程式人生 > >POJ3384 Feng Shui 【半平面交+向內縮排】

POJ3384 Feng Shui 【半平面交+向內縮排】

就是 向內縮排+半平面交模板 一開始WA哭了,換了個kuangbin的板子就過了(感謝。。 感覺向內縮排的那個模板 直接算的 比用三角函式的精度好一點……(大概?)

(然後這題程式碼寫的很辣雞)

程式碼:

#include <cstdio>
#include <cmath>
#include <algorithm>
using namespace std;
const int maxn = 20000;
const double eps = 1e-12;
const double PI = acos(-1.0);
int dcmp(double x) {
    if
(fabs(x) < eps) return 0; return x < 0? -1: 1; } struct Point{ double x,y; Point(double x=0.0,double y=0.0):x(x),y(y){} void Read(){ scanf("%lf%lf",&x,&y); } void Write(){ printf("%.10f %.10f\n",x,y); } bool operator<(const Point &b) const{//水平序 return !dcmp
(x-b.x)? y<b.y:x<b.x; } }p[maxn], pol[maxn]; Point operator +(Point a,Point b){ return Point(a.x+b.x,a.y+b.y); } Point operator -(Point a,Point b){ return Point(a.x-b.x,a.y-b.y); } Point operator *(Point a,double k){ return Point(k*a.x,k*a.y); } Point operator *(double k,Point a){ return
Point(k*a.x,k*a.y); } double operator *(Point a,Point b){ return a.x*b.x+a.y*b.y; } Point operator /(Point a,double k){ return Point(a.x/k,a.y/k); } double operator ^(Point a,Point b){ return a.x*b.y-a.y*b.x; } double cross(Point a,Point b){ return a.x*b.y-a.y*b.x; } double cross(Point a,Point b,Point c){ return cross(b-a,c-a); } double dot(Point a,Point b){ return a.x*b.x+a.y*b.y; } double dot(Point a,Point b,Point c){ return dot(b-a,c-a); } double length(Point p){ return sqrt(p*p); } Point unit(Point p){ return 1.0/length(p)*p; } Point rotateV(Point a,Point b,double ang){ Point p=b-a; return unit(Point(p.x*cos(ang)-p.y*sin(ang),p.x*sin(ang)+p.y*cos(ang))); } struct Line { Point s,e; double k; Line(){} Line(Point _s,Point _e) { s = _s; e = _e; k = atan2(e.y - s.y,e.x - s.x); } Point operator &(const Line &b)const { Point res = s; double t = ((s - b.s)^(b.s - b.e))/((s - e)^(b.s - b.e)); res.x += (e.x - s.x)*t; res.y += (e.y - s.y)*t; return res; } }; //半平面交,直線的左邊代表有效區域 bool HPIcmp(Line a,Line b) { if(fabs(a.k - b.k) > eps)return a.k < b.k; return ((a.s - b.s)^(b.e - b.s)) < 0; } Line Q[1010]; void HPI(Line line[], int n, Point res[], int &resn) { int tot = n; sort(line,line+n,HPIcmp); tot = 1; for(int i = 1;i < n;i++) if(fabs(line[i].k - line[i-1].k) > eps) line[tot++] = line[i]; int head = 0, tail = 1; Q[0] = line[0]; Q[1] = line[1]; resn = 0; for(int i = 2; i < tot; i++) { if(fabs((Q[tail].e-Q[tail].s)^(Q[tail-1].e-Q[tail-1].s)) < eps || fabs((Q[head].e-Q[head].s)^(Q[head+1].e-Q[head+1].s)) < eps) return; while(head < tail && (((Q[tail]&Q[tail-1]) - line[i].s)^(line[i].e-line[i].s)) > eps) tail--; while(head < tail && (((Q[head]&Q[head+1]) - line[i].s)^(line[i].e-line[i].s)) > eps) head++; Q[++tail] = line[i]; } while(head < tail && (((Q[tail]&Q[tail-1]) - Q[head].s)^(Q[head].e-Q[head].s)) > eps) tail--; while(head < tail && (((Q[head]&Q[head-1]) - Q[tail].s)^(Q[tail].e-Q[tail].e)) > eps) head++; if(tail <= head + 1)return; for(int i = head; i < tail; i++) res[resn++] = Q[i]&Q[i+1]; if(head < tail - 1) res[resn++] = Q[head]&Q[tail]; } Line line[1010]; //*兩點間距離 double dist(Point a,Point b) { return sqrt((a-b)*(a-b)); } void change(Point a,Point b,Point &c,Point &d,double p)//將線段ab往左移動距離p { double len = dist(a,b); double dx = (a.y - b.y)*p/len; double dy = (b.x - a.x)*p/len; c.x = a.x + dx; c.y = a.y + dy; d.x = b.x + dx; d.y = b.y + dy; } int n; double r; int main() { while (~scanf("%d%lf", &n, &r)) { for (int i = 0; i < n; i++) p[i].Read(); p[n] = p[0]; for (int i = n; i; i--) { Point t1, t2; change(p[i], p[i-1], t1, t2, r); line[n-i] = Line(t1, t2); } int m; HPI(line, n, p, m); int res1 = 0, res2 = 0; double ret = 0.; for (int i = 0; i < m; i++) { for (int j = i + 1; j < m; j++) { double td = dist(p[i], p[j]); if (dcmp(td-ret)>=0) { ret = td; res1 = i; res2 = j; } } } printf("%.4f %.4f %.4f %.4f\n", p[res1].x, p[res1].y, p[res2].x, p[res2].y); } return 0; }