Python製作神經網路程式碼
阿新 • • 發佈:2018-12-20
Python製作神經網路,程式碼如下:
import numpy import scipy.special #neural network class definition class neuralNetwork: #initialise the neural network def __init__(self , inputnodes, hiddennodes, outputnodes,learningrate): # set number of nodes in each input, hidden, output layer self.inodes = inputnodes self.hnodes = hiddennodes self.onodes = outputnodes # link weight matrices self.wih = numpy.random.normal(0.0, pow(self.hnodes,-0.5), (self.hnodes, self.inodes)) self.who = numpy.random.normal(0.0, pow(self.onodes,-0.5), (self.onodes, self.hnodes)) # learning rate self.lr = learningrate # activation function is the sigmoid function self.activation_function = lambda x:scipy.special.expit(x) print("初始化權重矩陣wih:") print(self.wih) print("初始化權重矩陣who:") print(self.who) pass #train the neural network def train(self, inputs_list, targets_list): # convert inputs list to 2d array inputs = numpy.array(inputs_list, ndmin=2).T targets = numpy.array(targets_list, ndmin=2).T # calculate signals into hidden layer hidden_inputs = numpy.dot(self.wih, inputs) # calculate the signals emerging from hidden layer hidden_outputs = self.activation_function(hidden_inputs) # calculate signals into final output layer final_inputs = numpy.dot(self.who, hidden_outputs) # calculate the signals emerging from final output layer final_outputs = self.activation_function(final_inputs) # output layer error is the (target - actual) output_errors = targets - final_outputs # hidden layer error is the output_errors, split by weights,recombined at hidden nodes hidden_errors = numpy.dot(self.who.T, output_errors) # update the weights for the links between the hidden and output layers self.who += self.lr * numpy.dot((output_errors*final_outputs * (1.0 - final_outputs)),numpy.transpose(hidden_outputs)) # update the weights for the links between the input and hidden layers self.wih += self.lr * numpy.dot((hidden_errors * hidden_outputs * (1.0 - hidden_outputs)), numpy.transpose(inputs)) print("訓練後的權重矩陣wih:") print(self.wih) print("訓練後的權重矩陣who:") print(self.who) pass #query the neural network def query(self,inputs_list): # convert inputs list to 2d array inputs = numpy.array(inputs_list, ndmin=2).T # calculate signals into hidden layer hidden_inputs = numpy.dot(self.wih, inputs) # calculate the signals emerging from hidden layer hidden_outputs =self.activation_function(hidden_inputs) # calculate signals into final output layer final_inputs = numpy.dot(self.who, hidden_outputs) # calculate the signals emerging from final output layer final_outputs = self.activation_function(final_inputs) return final_outputs # number of input, hidden and output nodes input_nodes = 3 hidden_nodes = 3 output_nodes = 3 # learning rate is 0.5 learning_rate = 0.3 # create instance of neural network n = neuralNetwork(input_nodes,hidden_nodes,output_nodes,learning_rate) print("未經訓練的輸出層輸出矩陣:") print(n.query([1.0,0.5,-1.5])) n.train([1.0,0.5,-1.5],[0.8,0.6,-1.2]) print("訓練後的輸出層輸出矩陣:") print(n.query([1.0,0.5,-1.5]))
執行結果如下: