1. 程式人生 > >十大排序經典演算法

十大排序經典演算法

十大經典排序演算法

ps:內容絕大部分來自部落格園,作者為一畫素。

微博:一畫素more

暱稱:一畫素

園齡:2年11個月

1、演算法概述

1.1 演算法複雜度

演算法複雜度分為時間複雜度和空間複雜度。

時間複雜度是指執行演算法所需要的計算工作量;而空間複雜度是指執行這個演算法所需要的記憶體空間。(演算法的複雜性添在執行該演算法時的計算機所需資源的多少上,計算機資源最重要的是時間和空間(即暫存器)資源)。

1.1.1 時間複雜度

時間複雜度是指同一問題可以用不同演算法解決,且一個演算法的質量優劣將影響演算法乃至整個程式的效率。

演算法的時間複雜度是一個函式,定性描述了演算法的執行時間,時間複雜度用大寫的O表示。時間複雜度在這種方式下可以被稱為是漸近的,它考察的是當輸入趨近於無窮時的情況。

計算方法:

  1. 一般情況下,演算法中基本操作重複執行的次數是問題規模n的某個函式,用T(n)表示,若有某個輔助函式f(n),使得T(n)/f(n)的極限值(當n趨近於無窮大時)為不等於零的常數,則稱f(n)是T(n)的同數量級函式。記作T(n)=O(f(n)),稱O(f(n)) 為演算法的漸進時間複雜度,簡稱時間複雜度。 分析:隨著模組n的增大,演算法執行的時間的增長率和 f(n) 的增長率成正比,所以 f(n) 越小,演算法的時間複雜度越低,演算法的效率越高。
  2. 在計算時間複雜度的時候,先找出演算法的基本操作,然後根據相應的各語句確定它的執行次數,再找出 T(n) 的同數量級(它的同數量級有以下:1,log2n,n,n log2n ,n的平方,n的三次方,2的n次方,n!),找出後,f(n) = 該數量級,若 T(n)/f(n) 求極限可得到一常數c,則時間複雜度T(n) = O(f(n))

例:演算法:

for(i=1; i<=n; ++i)
{
    for(j=1; j<=n; ++j)
    {
        c[i][j] = 0;//該步驟屬於基本操作執行次數:n的平方次
        for(k=1; k<=n; ++k)
            c[i][j] += a[i][k] * b[k][j];//該步驟屬於基本操作執行次數:n的三次方次
    }
}

則有 ,根據上面括號裡的同數量級,我們可以確定n的三次方為T(n)的同數量級。

則有 ,然後根據T(n)/f(n) 求極限可得到常數c。

則該演算法的時間複雜度:T(n) = O(n^3) 注:n^3即是n的3次方。

  1. 在pascal中比較容易理解,容易計算的方法是:看看有幾重for迴圈,只有一重則時間複雜度為O(n),二重則為O(n^2),依此類推,如果有二分則為O(logn),二分例如快速冪、二分查詢,如果一個for迴圈套一個二分,那麼時間複雜度則為O(nlogn)。

分類:

按數量級遞增排列,常見的時間複雜度有:

常數階O(1),對數階O(log2n),線性階O(n),

線性對數階O(nlog2n),平方階O(n2),立方階O(n3),…,

k次方階O(nk),指數階O(2n)。隨著問題規模n的不斷增大,上述時間複雜度不斷增大,演算法的執行效率越 低。

1.1.2 空間複雜度

空間複雜度(Space Complexity)是對一個演算法在執行過程中臨時佔用儲存空間大小的量度,記做S(n)=O(f(n))。比如直接插入排序的時間複雜度是O(n^2),空間複雜度是O(1) 。而一般的遞迴演算法就要有O(n)的空間複雜度了,因為每次遞迴都要儲存返回資訊。一個演算法的優劣主要從演算法的執行時間和所需要佔用的儲存空間兩個方面衡量。

分析一個演算法所佔用的儲存空間要從各方面綜合考慮。如對於遞迴演算法來說,一般都比較簡短,演算法本身所佔用的儲存空間較少,但執行時需要一個附加堆疊,從而佔用較多的臨時工作單元;若寫成非遞迴演算法,一般可能比較長,演算法本身佔用的儲存空間較多,但執行時將可能需要較少的儲存單元。

一個演算法的空間複雜度只考慮在執行過程中為區域性變數分配的儲存空間的大小,它包括為引數表中形參變數分配的儲存空間和為在函式體中定義的區域性變數分配的儲存空間兩個部分。若一個演算法為 2() 遞迴演算法,其空間複雜度為遞迴所使用的堆疊空間的大小,它等於一次呼叫所分配的臨時儲存空間的大小乘以被呼叫的次數(即為遞迴呼叫的次數加1,這個1表示開始進行的一次非遞迴呼叫)。演算法的空間複雜度一般也以數量級的形式給出。如當一個演算法的空間複雜度為一個常量,即不隨被處理資料量n的大小而改變時,可表示為O(1);當一個演算法的空間複雜度與以2為底的n的對數成正比時,可表示為O(log2n);當一個演算法的空間複雜度與n成線性比例關係時,可表示為O(n).若形參為陣列,則只需要為它分配一個儲存由實參傳送來的一個地址指標的空間,即一個機器字長空間;若形參為引用方式,則也只需要為其分配儲存一個地址的空間,用它來儲存對應實參變數的地址,以便由系統自動引用實參變數。

1.1.3 時間空間複雜度的聯絡

一個演算法的空間複雜度只考慮在執行過程中為區域性變數分配的儲存空間的大小,它包括為引數表中形參變數分配的儲存空間和為在函式體中定義的區域性變數分配的儲存空間兩個部分。若一個演算法為 2() 遞迴演算法,其空間複雜度為遞迴所使用的堆疊空間的大小,它等於一次呼叫所分配的臨時儲存空間的大小乘以被呼叫的次數(即為遞迴呼叫的次數加1,這個1表示開始進行的一次非遞迴呼叫)。演算法的空間複雜度一般也以數量級的形式給出。如當一個演算法的空間複雜度為一個常量,即不隨被處理資料量n的大小而改變時,可表示為O(1);當一個演算法的空間複雜度與以2為底的n的對數成正比時,可表示為O(log2n);當一個演算法的空間複雜度與n成線性比例關係時,可表示為O(n).若形參為陣列,則只需要為它分配一個儲存由實參傳送來的一個地址指標的空間,即一個機器字長空間;若形參為引用方式,則也只需要為其分配儲存一個地址的空間,用它來儲存對應實參變數的地址,以便由系統自動引用實參變數。

1.2 演算法分類

十種常見的排序演算法可以大致分為兩類:

  • 非線性時間比較類排序 通過比較來決定元素間的相對次序,由於不能突破時間複雜度[ O(nlogn) ]的限制,因此稱為非線性時間比較類排序。
  • 線性時間非比較類排序 不通過比較類決定元素間的相對次序,他可以突破基於比較排序的時間下界,以線性時間執行,因此成為線性時間非比較類排序。

1.3 演算法複雜度

1.4 相關概念

穩定:如果a原本在b前面,而a=b,排序之後a仍然在b的前面。

不穩定:如果a原本在b前面,而a=b,排序之後a可能會出現在b的後面。

時間複雜度:對排序資料的總的操作次數。反映當n變化時,操作次數呈現什麼規律。

空間複雜度:是指演算法在計算機內執行時所需儲存空間的度量,它也是資料規模n的函式。

2、氣泡排序(Bubble Sort)

氣泡排序是一種簡單的排序演算法。它重複地走訪過要排序的數列,一次比較兩個元素,如果它們的順序錯誤就把它們交換過來。走訪數列的工作是重複地進行直到沒有再需要交換,也就是說該數列已經排序完成。這個演算法的名字由來是因為越小的元素會經由交換慢慢“浮”到數列的頂端。

2.1 演算法描述

  • 比較相鄰的元素。如果第一個比第二個大,就交換它們兩個;
  • 對每一對相鄰元素作同樣的工作,從開始第一對到結尾的最後一對,這樣在最後的元素應該會是最大的數;
  • 針對所有的元素重複以上的步驟,除了最後一個;
  • 重複步驟1~3,直到排序完成。

2.2 動圖演示

在這裡插入圖片描述

2.3 C語言程式碼的實現

function bubbleSort(arr) {
    var len = arr.length;
    for (var i = 0; i < len - 1; i++) {
        for (var j = 0; j < len - 1 - i; j++) {
            if (arr[j] > arr[j+1]) {        // 相鄰元素兩兩對比
                var temp = arr[j+1];        // 元素交換
                arr[j+1] = arr[j];
                arr[j] = temp;
            }
        }
    }
    return arr;
}

3、選擇排序(Selection Sort)

選擇排序(Selection-sort)是一種簡單直觀的排序演算法。它的工作原理:首先在未排序序列中找到最小(大)元素,存放到排序序列的起始位置,然後,再從剩餘未排序元素中繼續尋找最小(大)元素,然後放到已排序序列的末尾。以此類推,直到所有元素均排序完畢。

3.1 演算法描述

n個記錄的直接選擇排序可經過n-1趟直接選擇排序得到有序結果。具體演算法描述如下:

  1. 初始狀態:無序區為R[1…n],有序區為空;
  2. 第i趟排序(i=1,2,3…n-1)開始時,當前有序區和無序區分別為R[1…i-1]和R(i…n)。該趟排序從當前無序區中-選出關鍵字最小的記錄 R[k],將它與無序區的第1個記錄R交換,使R[1…i]和R[i+1…n)分別變為記錄個數增加1個的新有序區和記錄個數減少1個的新無序區;
  3. n-1趟結束,陣列有序化了。

3.2 動圖演示

在這裡插入圖片描述

3.3 C語言程式碼的實現

function selectionSort(arr) {
    var len = arr.length;
    var minIndex, temp;
    for (var i = 0; i < len - 1; i++) {
        minIndex = i;
        for (var j = i + 1; j < len; j++) {
            if (arr[j] < arr[minIndex]) {     // 尋找最小的數
                minIndex = j;                 // 將最小數的索引儲存
            }
        }
        temp = arr[i];
        arr[i] = arr[minIndex];
        arr[minIndex] = temp;
    }
    return arr;
} 

3.4 演算法分析

是表現最穩定的演算法之一,因為無論如何都是O(n²)的複雜度,用到的時候儘量選擇小資料規模的程式。這種演算法唯一的好處的不佔用額外的記憶體空間。

理論上來講,這是所有人首先想到的排序方式。

4、插入排序(Insertion Sort)

插入排序(Insertion-Sort)的演算法描述是一種簡單直觀的排序演算法。它的工作原理是通過構建有序序列,對於未排序資料,在已排序序列中從後向前掃描,找到相應位置並插入。

4.1 演算法描述

一般來說,插入排序都採用in-place在陣列上實現。具體演算法描述如下:

  • 從第一個元素開始,該元素可以認為已經被排序;
  • 取出下一個元素,在已經排序的元素序列中從後向前掃描;
  • 如果該元素(已排序)大於新元素,將該元素移到下一位置;
  • 重複步驟3,直到找到已排序的元素小於或者等於新元素的位置;
  • 將新元素插入到該位置後;
  • 重複步驟2~5。

4.2 動圖演示

在這裡插入圖片描述

4.3 C語言程式碼的實現

function insertionSort(arr) {
    var len = arr.length;
    var preIndex, current;
    for (var i = 1; i < len; i++) {
        preIndex = i - 1;
        current = arr[i];
        while (preIndex >= 0 && arr[preIndex] > current) {
            arr[preIndex + 1] = arr[preIndex];
            preIndex--;
        }
        arr[preIndex + 1] = current;
    }
    return arr;
}

4.3 演算法分析

插入排序在實現上,通常採用in-place排序(即只需用到O(1)的額外空間的排序),因而在從後向前掃描過程中,需要反覆把已排序元素逐步向後挪位,為最新元素提供插入空間。

5、 希爾排序(Shell Sort)

1959年Shell發明,第一個突破O(n²)的排序演算法,是簡單插入排序的改進版。它與插入排序的不同之處在於,它會優先比較距離較遠的元素。希爾排序又叫縮小增量排序。

5.1 演算法描述

先將整個待排序的記錄序列分割成為若干子序列分別進行直接插入排序,具體演算法描述:

  • 選擇一個增量序列t1,t2,…,tk,其中ti>tj,tk=1;
  • 按增量序列個數k,對序列進行k 趟排序;
  • 每趟排序,根據對應的增量ti,將待排序列分割成若干長度為m 的子序列,分別對各子表進行直接插入排序。僅增量因子為1 時,整個序列作為一個表來處理,表長度即為整個序列的長度。

5.2 動圖演示

在這裡插入圖片描述 5.3 C語言程式碼的實現

function shellSort(arr) {
    var len = arr.length,
        temp,
        gap = 1;
    while (gap < len / 3) {          // 動態定義間隔序列
        gap = gap * 3 + 1;
    }
    for (gap; gap > 0; gap = Math.floor(gap / 3)) {
        for (var i = gap; i < len; i++) {
            temp = arr[i];
            for (var j = i-gap; j > 0 && arr[j]> temp; j-=gap) {
                arr[j + gap] = arr[j];
            }
            arr[j + gap] = temp;
        }
    }
    return arr;
}

5.4 演算法分析

希爾排序的核心在於間隔序列的設定。既可以提前設定好間隔序列,也可以動態的定義間隔序列。動態定義間隔序列的演算法是《演算法(第4版)》的合著者Robert Sedgewick提出的。

6、歸併排序(Merge Sort)

歸併排序是建立在歸併操作上的一種有效的排序演算法。該演算法是採用分治法(Divide and Conquer)的一個非常典型的應用。將已有序的子序列合併,得到完全有序的序列;即先使每個子序列有序,再使子序列段間有序。若將兩個有序表合併成一個有序表,稱為2-路歸併。

分治法:

1.精髓:

分–將問題分解為規模更小的子問題;

治–將這些規模更小的子問題逐個擊破;

合–將已解決的子問題合併,最終得出“母”問題的解;

2.能解決的問題需具有的特徵:

  1. 該問題的規模縮小到一定的程度就可以容易地解決

  2. 該問題可以分解為若干個規模較小的相同問題,即該問題具有最優子結構性質。

  3. 利用該問題分解出的子問題的解可以合併為該問題的解;

  4. 該問題所分解出的各個子問題是相互獨立的,即子問題之間不包含公共的子問題。

6.1 演算法描述

  • 把長度為n的輸入序列分成兩個長度為n/2的子序列;
  • 對這兩個子序列分別採用歸併排序;
  • 將兩個排序好的子序列合併成一個最終的排序序列。

6.2 動圖演示

在這裡插入圖片描述 6.3 C語言程式碼的實現

function mergeSort(arr) {  // 採用自上而下的遞迴方法
    var len = arr.length;
    if (len < 2) {
        return arr;
    }
    var middle = Math.floor(len / 2),
        left = arr.slice(0, middle),
        right = arr.slice(middle);
    return merge(mergeSort(left), mergeSort(right));
}
 
function merge(left, right) {
    var result = [];
 
    while (left.length>0 && right.length>0) {
        if (left[0] <= right[0]) {
            result.push(left.shift());
        } else {
            result.push(right.shift());
        }
    }
 
    while (left.length)
        result.push(left.shift());
 
    while (right.length)
        result.push(right.shift());
 
    return result;
}

5.4 演算法分析

歸併排序是一種穩定的排序方法。和選擇排序一樣,歸併排序的效能不受輸入資料的影響,但表現比選擇排序好的多,因為始終都是O(nlogn)的時間複雜度。代價是需要額外的記憶體空間。

7、快速排序(Quick Sort)

快速排序的基本思想:通過一趟排序將待排記錄分隔成獨立的兩部分,其中一部分記錄的關鍵字均比另一部分的關鍵字小,則可分別對這兩部分記錄繼續進行排序,以達到整個序列有序。

7.1 演算法描述

快速排序使用分治法來把一個串(list)分為兩個子串(sub-lists)。具體演算法描述如下:

  • 從數列中挑出一個元素,稱為 “基準”(pivot);
  • 重新排序數列,所有元素比基準值小的擺放在基準前面,所有元素比基準值大的擺在基準的後面(相同的數可以到任一邊)。在這個分割槽退出之後,該基準就處於數列的中間位置。這個稱為分割槽(partition)操作;
  • 遞迴地(recursive)把小於基準值元素的子數列和大於基準值元素的子數列排序。

7.2 動圖演示

在這裡插入圖片描述

7.3 C語言程式碼的實現

function quickSort(arr, left, right) {
    var len = arr.length,
        partitionIndex,
        left = typeof left != 'number' ? 0 : left,
        right = typeof right != 'number' ? len - 1 : right;
 
    if (left < right) {
        partitionIndex = partition(arr, left, right);
        quickSort(arr, left, partitionIndex-1);
        quickSort(arr, partitionIndex+1, right);
    }
    return arr;
}
 
function partition(arr, left ,right) {     // 分割槽操作
    var pivot = left,                      // 設定基準值(pivot)
        index = pivot + 1;
    for (var i = index; i <= right; i++) {
        if (arr[i] < arr[pivot]) {
            swap(arr, i, index);
            index++;
        }       
    }
    swap(arr, pivot, index - 1);
    return index-1;
}
 
function swap(arr, i, j) {
    var temp = arr[i];
    arr[i] = arr[j];
    arr[j] = temp;
}

8、堆排序(Heap Sort)

堆排序(Heapsort)是指利用堆這種資料結構所設計的一種排序演算法。堆積是一個近似完全二叉樹的結構,並同時滿足堆積的性質:即子結點的鍵值或索引總是小於(或者大於)它的父節點。

8.1 演算法描述

  • 將初始待排序關鍵字序列(R1,R2….Rn)構建成大頂堆,此堆為初始的無序區;
  • 將堆頂元素R[1]與最後一個元素R[n]交換,此時得到新的無序區(R1,R2,……Rn-1)和新的有序區(Rn),且滿足R[1,2…n-1]<=R[n];
  • 由於交換後新的堆頂R[1]可能違反堆的性質,因此需要對當前無序區(R1,R2,……Rn-1)調整為新堆,然後再次將R[1]與無序區最後一個元素交換,得到新的無序區(R1,R2….Rn-2)和新的有序區(Rn-1,Rn)。不斷重複此過程直到有序區的元素個數為n-1,則整個排序過程完成。

8.2 動圖演示 https://images2017.cnblogs.com/blog/849589/201710/849589-20171015231308699-356134237.gif 8.3 C語言程式碼的實現

var len;    // 因為宣告的多個函式都需要資料長度,所以把len設定成為全域性變數
 
function buildMaxHeap(arr) {   // 建立大頂堆
    len = arr.length;
    for (var i = Math.floor(len/2); i >= 0; i--) {
        heapify(arr, i);
    }
}
 
function heapify(arr, i) {     // 堆調整
    var left = 2 * i + 1,
        right = 2 * i + 2,
        largest = i;
 
    if (left < len && arr[left] > arr[largest]) {
        largest = left;
    }
 
    if (right < len && arr[right] > arr[largest]) {
        largest = right;
    }
 
    if (largest != i) {
        swap(arr, i, largest);
        heapify(arr, largest);
    }
}
 
function swap(arr, i, j) {
    var temp = arr[i];
    arr[i] = arr[j];
    arr[j] = temp;
}
 
function heapSort(arr) {
    buildMaxHeap(arr);
 
    for (var i = arr.length - 1; i > 0; i--) {
        swap(arr, 0, i);
        len--;
        heapify(arr, 0);
    }
    return arr;
}

9、計數排序(Counting Sort)

計數排序不是基於比較的排序演算法,其核心在於將輸入的資料值轉化為鍵儲存在額外開闢的陣列空間中。 作為一種線性時間複雜度的排序,計數排序要求輸入的資料必須是有確定範圍的整數。

9.1 演算法描述

  • 找出待排序的陣列中最大和最小的元素;
  • 統計陣列中每個值為i的元素出現的次數,存入陣列C的第i項;
  • 對所有的計數累加(從C中的第一個元素開始,每一項和前一項相加);
  • 反向填充目標陣列:將每個元素i放在新陣列的第C(i)項,每放一個元素就將C(i)減去1。

9.2 動圖演示

在這裡插入圖片描述

9.3 程式碼實現

function countingSort(arr, maxValue) {
    var bucket = new Array(maxValue + 1),
        sortedIndex = 0;
        arrLen = arr.length,
        bucketLen = maxValue + 1;
 
    for (var i = 0; i < arrLen; i++) {
        if (!bucket[arr[i]]) {
            bucket[arr[i]] = 0;
        }
        bucket[arr[i]]++;
    }
 
    for (var j = 0; j < bucketLen; j++) {
        while(bucket[j] > 0) {
            arr[sortedIndex++] = j;
            bucket[j]--;
        }
    }
 
    return arr;
}

9.4 演算法分析

計數排序是一個穩定的排序演算法。當輸入的元素是 n 個 0到 k 之間的整數時,時間複雜度是O(n+k),空間複雜度也是O(n+k),其排序速度快於任何比較排序演算法。當k不是很大並且序列比較集中時,計數排序是一個很有效的排序演算法。

10、 桶排序(Bucket Sort)

桶排序是計數排序的升級版。它利用了函式的對映關係,高效與否的關鍵就在於這個對映函式的確定。桶排序 (Bucket sort)的工作的原理:假設輸入資料服從均勻分佈,將資料分到有限數量的桶裡,每個桶再分別排序(有可能再使用別的排序演算法或是以遞迴方式繼續使用桶排序進行排)。

10.1 演算法描述

  • 設定一個定量的陣列當作空桶;
  • 遍歷輸入資料,並且把資料一個一個放到對應的桶裡去;
  • 對每個不是空的桶進行排序;
  • 從不是空的桶裡把排好序的資料拼接起來。

10.2 圖片演示

在這裡插入圖片描述

9.3 C語言程式碼段的實現

function bucketSort(arr, bucketSize) {
    if (arr.length === 0) {
      return arr;
    }
 
    var i;
    var minValue = arr[0];
    var maxValue = arr[0];
    for (i = 1; i < arr.length; i++) {
      if (arr[i] < minValue) {
          minValue = arr[i];                // 輸入資料的最小值
      } else if (arr[i] > maxValue) {
          maxValue = arr[i];                // 輸入資料的最大值
      }
    }
 
    // 桶的初始化
    var DEFAULT_BUCKET_SIZE = 5;            // 設定桶的預設數量為5
    bucketSize = bucketSize || DEFAULT_BUCKET_SIZE;
    var bucketCount = Math.floor((maxValue - minValue) / bucketSize) + 1;  
    var buckets = new Array(bucketCount);
    for (i = 0; i < buckets.length; i++) {
        buckets[i] = [];
    }
 
    // 利用對映函式將資料分配到各個桶中
    for (i = 0; i < arr.length; i++) {
        buckets[Math.floor((arr[i] - minValue) / bucketSize)].push(arr[i]);
    }
 
    arr.length = 0;
    for (i = 0; i < buckets.length; i++) {
        insertionSort(buckets[i]);                      // 對每個桶進行排序,這裡使用了插入排序
        for (var j = 0; j < buckets[i].length; j++) {
            arr.push(buckets[i][j]);                     
        }
    }
 
    return arr;
}

10.4 演算法分析

桶排序最好情況下使用線性時間O(n),桶排序的時間複雜度,取決與對各個桶之間資料進行排序的時間複雜度,因為其它部分的時間複雜度都為O(n)。很顯然,桶劃分的越小,各個桶之間的資料越少,排序所用的時間也會越少。但相應的空間消耗就會增大。

11、基數排序(Radix Sort)

基數排序是按照低位先排序,然後收集;再按照高位排序,然後再收集;依次類推,直到最高位。有時候有些屬性是有優先順序順序的,先按低優先順序排序,再按高優先順序排序。最後的次序就是高優先順序高的在前,高優先順序相同的低優先順序高的在前。

11.1 演算法描述

  • 取得陣列中的最大數,並取得位數;
  • arr為原始陣列,從最低位開始取每個位組成radix陣列;
  • 對radix進行計數排序(利用計數排序適用於小範圍數的特點);

11.2 動圖演示 在這裡插入圖片描述 11.3 C語言程式碼實現

// LSD Radix Sort
var counter = [];
function radixSort(arr, maxDigit) {
    var mod = 10;
    var dev = 1;
    for (var i = 0; i < maxDigit; i++, dev *= 10, mod *= 10) {
        for(var j = 0; j < arr.length; j++) {
            var bucket = parseInt((arr[j] % mod) / dev);
            if(counter[bucket]==null) {
                counter[bucket] = [];
            }
            counter[bucket].push(arr[j]);
        }
        var pos = 0;
        for(var j = 0; j < counter.length; j++) {
            var value = null;
            if(counter[j]!=null) {
                while ((value = counter[j].shift()) != null) {
                      arr[pos++] = value;
                }
          }
        }
    }
    return arr;
}

12.4 演算法分析

基數排序基於分別排序,分別收集,所以是穩定的。但基數排序的效能比桶排序要略差,每一次關鍵字的桶分配都需要O(n)的時間複雜度,而且分配之後得到新的關鍵字序列又需要O(n)的時間複雜度。假如待排資料可以分為d個關鍵字,則基數排序的時間複雜度將是O(d*2n) ,當然d要遠遠小於n,因此基本上還是線性級別的。

基數排序的空間複雜度為O(n+k),其中k為桶的數量。一般來說n>>k,因此額外空間需要大概n個左右。