LeetCode 62. Unique Paths--二維陣列從左上角到右下角的唯一路徑的種數有多少,只能向右或向下移動--DP
阿新 • • 發佈:2018-12-22
A robot is located at the top-left corner of a m x n grid (marked 'Start' in the diagram below).
The robot can only move either down or right at any point in time. The robot is trying to reach the bottom-right corner of the grid (marked 'Finish' in the diagram below).
How many possible unique paths are there?
Above is a 7 x 3 grid. How many possible unique paths are there?
Note: m and n will be at most 100.
Example 1:
Input: m = 3, n = 2 Output: 3 Explanation: From the top-left corner, there are a total of 3 ways to reach the bottom-right corner: 1. Right -> Right -> Down 2. Right -> Down -> Right 3. Down -> Right -> Right
Example 2:
Input: m = 7, n = 3
Output: 28
/** * @Desc * @Author liuyazhou * @CreateTime 2018/11/18 17:19 **/ public class LeetCode_62_UniquePaths { public static void main(String[] args) { System.out.println(new LeetCode_62_UniquePaths().uniquePaths(7,3)); } /** * @param m 列數 * @param n 行數 * @return */ public int uniquePaths(int m, int n) { int[][] dp = new int[n][m]; for (int i = 0; i < m; i++) { dp[0][i] = 1; } for (int i = 0; i < n; i++) { dp[i][0] = 1; } for (int i = 1; i < n; i++) { for (int j = 1; j < m; j++) { dp[i][j] = dp[i][j - 1] + dp[i - 1][j];//該元素值等於上邊與左邊的元素值之和 } } return dp[n - 1][m - 1]; } }
Runtime: 0 ms, faster than 100.00% of Java online submissions for Unique Paths.