以太坊P2P協議
建立P2P server
func (n *Node) Start() error {
...
// Initialize the p2p server. This creates the node key and
// discovery databases.
n.serverConfig = n.config.P2P
n.serverConfig.PrivateKey = n.config.NodeKey()
n.serverConfig.Name = n.config.NodeName()
n.serverConfig.Logger = n.log
if n.serverConfig.StaticNodes == nil {
n.serverConfig.StaticNodes = n.config.StaticNodes()
}
if n.serverConfig.TrustedNodes == nil {
n.serverConfig.TrustedNodes = n.config.TrustedNodes()
}
if n.serverConfig.NodeDatabase == "" {
n.serverConfig.NodeDatabase = n.config.NodeDB()
}
running := &p2p.Server{Config: n.serverConfig}
n.log.Info("Starting peer-to-peer node" , "instance", n.serverConfig.Name)
....
}
程式碼首先做了一些檢查工作:加鎖、判斷結點是否已經執行、檢查datadir是否可以開啟,然後初始化P2P server配置,最後用該配置建立了一個p2p.Server例項。首先初始化Node中的services欄位,然後遍歷serviceFuncs,也就是之前註冊的所有Service的建構函式列表。在建立Service例項之前,先為每個Service建立一個ServiceContext,之前提到過,ServiceContext裡儲存的是從Node繼承過來的一些資訊。接著通過建構函式建立Service例項,然後加入到service這個map中。
建立Service
// Otherwise copy and specialize the P2P configuration
services := make(map[reflect.Type]Service)
for _, constructor := range n.serviceFuncs {
// Create a new context for the particular service
ctx := &ServiceContext{
config: n.config,
services: make(map[reflect.Type]Service),
EventMux: n.eventmux,
AccountManager: n.accman,
}
for kind, s := range services { // copy needed for threaded access
ctx.services[kind] = s
}
// Construct and save the service
service, err := constructor(ctx)
if err != nil {
return err
}
kind := reflect.TypeOf(service)
if _, exists := services[kind]; exists {
return &DuplicateServiceError{Kind: kind}
}
services[kind] = service
}
首先初始化Node中的services欄位,然後遍歷serviceFuncs,也就是之前註冊的所有Service的建構函式列表。在建立Service例項之前,先為每個Service建立一個ServiceContext,之前提到過,ServiceContext裡儲存的是從Node繼承過來的一些資訊。接著通過建構函式建立Service例項,然後加入到service這個map中。
啟動P2P server
// Gather the protocols and start the freshly assembled P2P server
for _, service := range services {
running.Protocols = append(running.Protocols, service.Protocols()...)
}
if err := running.Start(); err != nil {
return convertFileLockError(err)
}
首先把所有Service支援的協議集合到一起,然後呼叫p2p.Server的Start()方法啟動P2P server(程式碼位於p2p/server.go)。P2P server會繫結一個UDP埠和一個TCP埠,埠號是相同的(預設30303)。UDP埠主要用於結點發現,TCP埠主要用於業務資料傳輸,基於RLPx加密傳輸協議。所以具體來說,Start()方法做了以下幾件事情:
偵聽UDP埠:用於結點發現
發起UDP請求獲取結點表:內部會啟動goroutine來完成
偵聽TCP埠:用於業務資料傳輸,基於RLPx協議
發起TCP請求連線到其他結點:也是啟動goroutine完成
// p2p/server.go
// Servers can not be re-used after stopping.
func (srv *Server) Start() (err error) {
srv.lock.Lock()
defer srv.lock.Unlock()
if srv.running {
return errors.New("server already running")
}
srv.running = true
srv.log = srv.Config.Logger
if srv.log == nil {
srv.log = log.New()
}
srv.log.Info("Starting P2P networking")
// static fields
if srv.PrivateKey == nil {
return fmt.Errorf("Server.PrivateKey must be set to a non-nil key")
}
if srv.newTransport == nil {
srv.newTransport = newRLPX
}
if srv.Dialer == nil {
srv.Dialer = TCPDialer{&net.Dialer{Timeout: defaultDialTimeout}}
}
srv.quit = make(chan struct{})
srv.addpeer = make(chan *conn)
srv.delpeer = make(chan peerDrop)
srv.posthandshake = make(chan *conn)
srv.addstatic = make(chan *discover.Node)
srv.removestatic = make(chan *discover.Node)
srv.peerOp = make(chan peerOpFunc)
srv.peerOpDone = make(chan struct{})
var (
conn *net.UDPConn
sconn *sharedUDPConn
realaddr *net.UDPAddr
unhandled chan discover.ReadPacket
)
if !srv.NoDiscovery || srv.DiscoveryV5 {
addr, err := net.ResolveUDPAddr("udp", srv.ListenAddr)
if err != nil {
return err
}
conn, err = net.ListenUDP("udp", addr)
if err != nil {
return err
}
realaddr = conn.LocalAddr().(*net.UDPAddr)
if srv.NAT != nil {
if !realaddr.IP.IsLoopback() {
go nat.Map(srv.NAT, srv.quit, "udp", realaddr.Port, realaddr.Port, "ethereum discovery")
}
// TODO: react to external IP changes over time.
if ext, err := srv.NAT.ExternalIP(); err == nil {
realaddr = &net.UDPAddr{IP: ext, Port: realaddr.Port}
}
}
}
if !srv.NoDiscovery && srv.DiscoveryV5 {
unhandled = make(chan discover.ReadPacket, 100)
sconn = &sharedUDPConn{conn, unhandled}
}
// node table
if !srv.NoDiscovery {
cfg := discover.Config{
PrivateKey: srv.PrivateKey,
AnnounceAddr: realaddr,
NodeDBPath: srv.NodeDatabase,
NetRestrict: srv.NetRestrict,
Bootnodes: srv.BootstrapNodes,
Unhandled: unhandled,
}
ntab, err := discover.ListenUDP(conn, cfg)
if err != nil {
return err
}
srv.ntab = ntab
}
if srv.DiscoveryV5 {
var (
ntab *discv5.Network
err error
)
if sconn != nil {
ntab, err = discv5.ListenUDP(srv.PrivateKey, sconn, realaddr, "", srv.NetRestrict) //srv.NodeDatabase)
} else {
ntab, err = discv5.ListenUDP(srv.PrivateKey, conn, realaddr, "", srv.NetRestrict) //srv.NodeDatabase)
}
if err != nil {
return err
}
if err := ntab.SetFallbackNodes(srv.BootstrapNodesV5); err != nil {
return err
}
srv.DiscV5 = ntab
}
dynPeers := srv.maxDialedConns()
dialer := newDialState(srv.StaticNodes, srv.BootstrapNodes, srv.ntab, dynPeers, srv.NetRestrict)
// handshake
srv.ourHandshake = &protoHandshake{Version: baseProtocolVersion, Name: srv.Name, ID: discover.PubkeyID(&srv.PrivateKey.PublicKey)}
for _, p := range srv.Protocols {
srv.ourHandshake.Caps = append(srv.ourHandshake.Caps, p.cap())
}
// listen/dial
if srv.ListenAddr != "" {
if err := srv.startListening(); err != nil {
return err
}
}
if srv.NoDial && srv.ListenAddr == "" {
srv.log.Warn("P2P server will be useless, neither dialing nor listening")
}
srv.loopWG.Add(1)
go srv.run(dialer)
srv.running = true
return nil
}
啟動Service
// Start each of the services
started := []reflect.Type{}
for kind, service := range services {
// Start the next service, stopping all previous upon failure
if err := service.Start(running); err != nil {
for _, kind := range started {
services[kind].Stop()
}
running.Stop()
return err
}
// Mark the service started for potential cleanup
started = append(started, kind)
}
主要就是依次呼叫每個Service的Start()方法,然後把啟動的Service的型別儲存到started表中。之前提到 Ethereum 作為一個service,被Node註冊進去。Node start的時候會啟動其註冊的所有服務,Ethereum service也是一樣。
ethereum service
ethereum service的初始化
eth/backend.go
func New(ctx *node.ServiceContext, config *Config) (*Ethereum, error) {
if config.SyncMode == downloader.LightSync {
return nil, errors.New("can't run eth.Ethereum in light sync mode, use les.LightEthereum")
}
if !config.SyncMode.IsValid() {
return nil, fmt.Errorf("invalid sync mode %d", config.SyncMode)
}
chainDb, err := CreateDB(ctx, config, "chaindata")
if err != nil {
return nil, err
}
chainConfig, genesisHash, genesisErr := core.SetupGenesisBlock(chainDb, config.Genesis)
if _, ok := genesisErr.(*params.ConfigCompatError); genesisErr != nil && !ok {
return nil, genesisErr
}
log.Info("Initialised chain configuration", "config", chainConfig)
eth := &Ethereum{
config: config,
chainDb: chainDb,
chainConfig: chainConfig,
eventMux: ctx.EventMux,
accountManager: ctx.AccountManager,
engine: CreateConsensusEngine(ctx, &config.Ethash, chainConfig, chainDb),
shutdownChan: make(chan bool),
networkId: config.NetworkId,
gasPrice: config.GasPrice,
etherbase: config.Etherbase,
bloomRequests: make(chan chan *bloombits.Retrieval),
bloomIndexer: NewBloomIndexer(chainDb, params.BloomBitsBlocks),
}
log.Info("Initialising Ethereum protocol", "versions", ProtocolVersions, "network", config.NetworkId)
if !config.SkipBcVersionCheck {
bcVersion := rawdb.ReadDatabaseVersion(chainDb)
if bcVersion != core.BlockChainVersion && bcVersion != 0 {
return nil, fmt.Errorf("Blockchain DB version mismatch (%d / %d). Run geth upgradedb.\n", bcVersion, core.BlockChainVersion)
}
rawdb.WriteDatabaseVersion(chainDb, core.BlockChainVersion)
}
var (
vmConfig = vm.Config{EnablePreimageRecording: config.EnablePreimageRecording}
cacheConfig = &core.CacheConfig{Disabled: config.NoPruning, TrieNodeLimit: config.TrieCache, TrieTimeLimit: config.TrieTimeout}
)
eth.blockchain, err = core.NewBlockChain(chainDb, cacheConfig, eth.chainConfig, eth.engine, vmConfig)
if err != nil {
return nil, err
}
// Rewind the chain in case of an incompatible config upgrade.
if compat, ok := genesisErr.(*params.ConfigCompatError); ok {
log.Warn("Rewinding chain to upgrade configuration", "err", compat)
eth.blockchain.SetHead(compat.RewindTo)
rawdb.WriteChainConfig(chainDb, genesisHash, chainConfig)
}
eth.bloomIndexer.Start(eth.blockchain)
if config.TxPool.Journal != "" {
config.TxPool.Journal = ctx.ResolvePath(config.TxPool.Journal)
}
eth.txPool = core.NewTxPool(config.TxPool, eth.chainConfig, eth.blockchain)
if eth.protocolManager, err = NewProtocolManager(eth.chainConfig, config.SyncMode, config.NetworkId, eth.eventMux, eth.txPool, eth.engine, eth.blockchain, chainDb); err != nil {
return nil, err
}
eth.miner = miner.New(eth, eth.chainConfig, eth.EventMux(), eth.engine)
eth.miner.SetExtra(makeExtraData(config.ExtraData))
eth.APIBackend = &EthAPIBackend{eth, nil}
gpoParams := config.GPO
if gpoParams.Default == nil {
gpoParams.Default = config.GasPrice
}
eth.APIBackend.gpo = gasprice.NewOracle(eth.APIBackend, gpoParams)
return eth, nil
}
- 如果config.SyncMode 是 downloader.LightSync,走的是les/backend.go的初始化方法。
- chainDb, err := CreateDB(ctx, config, “chaindata”)開啟leveldb,leveldb是eth儲存資料庫。
- stopDbUpgrade := upgradeDeduplicateData(chainDb) 檢查chainDb版本,如果需要的話,啟動後臺程序進行升級。
- chainConfig, genesisHash, genesisErr := core.SetupGenesisBlock(chainDb, config.Genesis)裝載創世區塊。 根據節點條件判斷是從資料庫裡面讀取,還是從預設配置檔案讀取,還是從自定義配置檔案讀取,或者是從程式碼裡面獲取預設值。並返回區塊鏈的config和創世塊的hash。
- 裝載Etherum struct的各個成員。eventMux和accountManager 是Node 啟動 eth service的時候傳入的。eventMux可以認為是一個全域性的事件多路複用器,accountManager認為是一個全域性的賬戶管理器。engine建立共識引擎。etherbase 配置此Etherum的主賬號地址。初始化bloomRequests 通道和bloom過濾器。
- 判斷客戶端版本號和資料庫版本號是否一致
- eth.blockchain, err = core.NewBlockChain(chainDb, cacheConfig, eth.chainConfig, eth.engine, vmConfig) 初始化eth的blockchain,也就是eth的區塊鏈
- eth.blockchain.SetHead(compat.RewindTo) 根據創始區塊設定區塊頭
- eth.bloomIndexer.Start(eth.blockchain)啟動bloomIndexer
- eth.txPool = core.NewTxPool(config.TxPool, eth.chainConfig, eth.blockchain) 初始化eth 區塊鏈的交易池,儲存本地生產的和P2P網路同步過來的交易。
- eth.protocolManager, err = NewProtocolManager(eth.chainConfig, config.SyncMode, config.NetworkId, eth.eventMux, eth.txPool, eth.engine, eth.blockchain, chainDb)初始化以太坊協議管理器,用於區塊鏈P2P通訊
- miner.New(eth, eth.chainConfig, eth.EventMux(), eth.engine) 初始化礦工
- eth.ApiBackend.gpo = gasprice.NewOracle(eth.ApiBackend, gpoParams) 建立預言最新gasprice的預言機
ethereum service 啟動
func (s *Ethereum) Start(srvr *p2p.Server) error {
// Start the bloom bits servicing goroutines
s.startBloomHandlers()
// Start the RPC service
s.netRPCService = ethapi.NewPublicNetAPI(srvr, s.NetVersion())
// Figure out a max peers count based on the server limits
maxPeers := srvr.MaxPeers
if s.config.LightServ > 0 {
if s.config.LightPeers >= srvr.MaxPeers {
return fmt.Errorf("invalid peer config: light peer count (%d) >= total peer count (%d)", s.config.LightPeers, srvr.MaxPeers)
}
maxPeers -= s.config.LightPeers
}
// Start the networking layer and the light server if requested
s.protocolManager.Start(maxPeers)
if s.lesServer != nil {
s.lesServer.Start(srvr)
}
return nil
}
首先啟動bloom過濾器 eth 的net 相關Api 加入RPC 服務。
s.protocolManager.Start(maxPeers) 設定最大同步節點數,並啟動eth P2P通訊。
如果ethereum service 出問題了才會啟動lesServer。
ProtocolManager 以太坊P2P通訊協議管理
ethereum service的初始化 也會呼叫 NewProtocolManager
。
func New(ctx *node.ServiceContext, config *Config) (*Ethereum, error) {
...
if eth.protocolManager, err = NewProtocolManager(eth.chainConfig, config.SyncMode, config.NetworkId, eth.eventMux, eth.txPool, eth.engine, eth.blockchain, chainDb); err != nil {
return nil, err
}
....
}
ProtocolManager 的初始化方法
func NewProtocolManager(config *params.ChainConfig, mode downloader.SyncMode, networkId uint64, mux *event.TypeMux, txpool txPool, engine consensus.Engine, blockchain *core.BlockChain, chaindb ethdb.Database) (*ProtocolManager, error) {
// Create the protocol manager with the base fields
manager := &ProtocolManager{
networkId: networkId,
eventMux: mux,
txpool: txpool,
blockchain: blockchain,
chainconfig: config,
peers: newPeerSet(),
newPeerCh: make(chan *peer),
noMorePeers: make(chan struct{}),
txsyncCh: make(chan *txsync),
quitSync: make(chan struct{}),
}
// Figure out whether to allow fast sync or not
if mode == downloader.FastSync && blockchain.CurrentBlock().NumberU64() > 0 {
log.Warn("Blockchain not empty, fast sync disabled")
mode = downloader.FullSync
}
if mode == downloader.FastSync {
manager.fastSync = uint32(1)
}
// Initiate a sub-protocol for every implemented version we can handle
manager.SubProtocols = make([]p2p.Protocol, 0, len(ProtocolVersions))
for i, version := range ProtocolVersions {
// Skip protocol version if incompatible with the mode of operation
if mode == downloader.FastSync && version < eth63 {
continue
}
// Compatible; initialise the sub-protocol
version := version // Closure for the run
manager.SubProtocols = append(manager.SubProtocols, p2p.Protocol{
Name: ProtocolName,
Version: version,
Length: ProtocolLengths[i],
Run: func(p *p2p.Peer, rw p2p.MsgReadWriter) error {
peer := manager.newPeer(int(version), p, rw)
select {
case manager.newPeerCh <- peer:
manager.wg.Add(1)
defer manager.wg.Done()
return manager.handle(peer)
case <-manager.quitSync:
return p2p.DiscQuitting
}
},
NodeInfo: func() interface{} {
return manager.NodeInfo()
},
PeerInfo: func(id discover.NodeID) interface{} {
if p := manager.peers.Peer(fmt.Sprintf("%x", id[:8])); p != nil {
return p.Info()
}
return nil
},
})
}
if len(manager.SubProtocols) == 0 {
return nil, errIncompatibleConfig
}
// Construct the different synchronisation mechanisms
manager.downloader = downloader.New(mode, chaindb, manager.eventMux, blockchain, nil, manager.removePeer)
validator := func(header *types.Header) error {
return engine.VerifyHeader(blockchain, header, true)
}
heighter := func() uint64 {
return blockchain.CurrentBlock().NumberU64()
}
inserter := func(blocks types.Blocks) (int, error) {
// If fast sync is running, deny importing weird blocks
if atomic.LoadUint32(&manager.fastSync) == 1 {
log.Warn("Discarded bad propagated block", "number", blocks[0].Number(), "hash", blocks[0].Hash())
return 0, nil
}
atomic.StoreUint32(&manager.acceptTxs, 1) // Mark initial sync done on any fetcher import
return manager.blockchain.InsertChain(blocks)
}
manager.fetcher = fetcher.New(blockchain.GetBlockByHash, validator, manager.BroadcastBlock, heighter, inserter, manager.removePeer)
return manager, nil
}
- peers 為以太坊臨近的同步網路節點,newPeerCh、noMorePeers、txsyncCh、quitSync對應同步的通知
- manager.SubProtocols 建立以太坊 P2P server 的 通訊協議,通常只有一個值。manager.SubProtocols,在Node start的時候傳給以太坊 P2P server並同時start P2P server。協議裡面三個函式指標(Run、NodeInfo、PeerInfo)非常重要,後面會用到。
- manager.downloader = downloader.New(mode, chaindb, manager.eventMux, blockchain, nil, manager.removePeer)
建立了一個下載器,從遠端網路節點中獲取hashes和blocks。 - manager.fetcher = fetcher.New(blockchain.GetBlockByHash, validator, manager.BroadcastBlock, heighter, inserter, manager.removePeer)收集網路其他以太坊節點發過來的同步通知,進行驗證,並做出相應的處理。初始化傳入的幾個引數 都是用於處理同步區塊鏈資料的函式指標
Ethereum service 啟動的時候會同時啟動 ProtocolManager。
ProtocolManager的start()方法:
func (pm *ProtocolManager) Start(maxPeers int) {
pm.maxPeers = maxPeers
// broadcast transactions
pm.txsCh = make(chan core.NewTxsEvent, txChanSize)
pm.txsSub = pm.txpool.SubscribeNewTxsEvent(pm.txsCh)
go pm.txBroadcastLoop()
// broadcast mined blocks
pm.minedBlockSub = pm.eventMux.Subscribe(core.NewMinedBlockEvent{})
go pm.minedBroadcastLoop()
// start sync handlers
go pm.syncer()
go pm.txsyncLoop()
}
- 建立一個新交易的訂閱通道,並啟動交易廣播的goroutine
- 建立一個挖坑的訂閱通道,並啟動
- pm.syncer() 啟動同步goroutine,定時的和網路其他節點同步,並處理網路節點的相關通知
- pm.txsyncLoop() 啟動交易同步goroutine,把新的交易均勻的同步給網路節點
ProtocolManager主動向網路節點廣播
ProtocolManager Start()方法裡面的4個goroutine都是處理ProtocolManager向以太坊網路節點進行廣播的。
- pm.txBroadcastLoop()方法
func (pm *ProtocolManager) txBroadcastLoop() {
for {
select {
case event := <-pm.txsCh:
pm.BroadcastTxs(event.Txs)
// Err() channel will be closed when unsubscribing.
case <-pm.txsSub.Err():
return
}
}
}
core/tx_pool.go 產生新的交易的時候會send self.txCh,這時候會啟用 self.BroadcastTx(event.Tx.Hash(), event.Tx)
func (pm *ProtocolManager) BroadcastTx(hash common.Hash, tx *types.Transaction) {
// Broadcast transaction to a batch of peers not knowing about it
peers := pm.peers.PeersWithoutTx(hash)
//FIXME include this again: peers = peers[:int(math.Sqrt(float64(len(peers))))]
for _, peer := range peers {
peer.SendTransactions(types.Transactions{tx})
}
log.Trace("Broadcast transaction", "hash", hash, "recipients", len(peers))
}
向快取的沒有這個交易hash的網路節點廣播此次交易。
- pm.minedBroadcastLoop()方法
// Mined broadcast loop
func (self *ProtocolManager) minedBroadcastLoop() {
// automatically stops if unsubscribe
for obj := range self.minedBlockSub.Chan() {
switch ev := obj.Data.(type) {
case core.NewMinedBlockEvent:
self.BroadcastBlock(ev.Block, true) // First propagate block to peers
self.BroadcastBlock(ev.Block, false) // Only then announce to the rest
}
}
}
收到 miner.go
裡面 NewMinedBlockEvent
挖到新區塊的事件通知,啟用self.BroadcastBlock(ev.Block, true)
func (pm *ProtocolManager) BroadcastBlock(block *types.Block, propagate bool) {
hash := block.Hash()
peers := pm.peers.PeersWithoutBlock(hash)
// If propagation is requested, send to a subset of the peer
if propagate {
// Calculate the TD of the block (it's not imported yet, so block.Td is not valid)
var td *big.Int
if parent := pm.blockchain.GetBlock(block.ParentHash(), block.NumberU64()-1); parent != nil {
td = new(big.Int).Add(block.Difficulty(), pm.blockchain.GetTd(block.ParentHash(), block.NumberU64()-1))
} else {
log.Error("Propagating dangling block", "number", block.Number(), "hash", hash)
return
}
// Send the block to a subset of our peers
transfer := peers[:int(math.Sqrt(float64(len(peers))))]
for _, peer := range transfer {
peer.SendNewBlock(block, td)
}
log.Trace("Propagated block", "hash", hash, "recipients", len(transfer), "duration", common.PrettyDuration(time.Since(block.ReceivedAt)))
return
}
// Otherwise if the block is indeed in out own chain, announce it
if pm.blockchain.HasBlock(hash, block.NumberU64()) {
for _, peer := range peers {
peer.SendNewBlockHashes([]common.Hash{hash}, []uint64{block.NumberU64()})
}
log.Trace("Announced block", "hash", hash, "recipients", len(peers), "duration", common.PrettyDuration(time.Since(block.ReceivedAt)))
}
}
如果propagate為true 向網路節點廣播整個挖到的block,為false 只廣播挖到的區塊的hash值和number值。廣播的區塊還包括這個區塊打包的所有交易。
- pm.syncer() 方法
func (pm *ProtocolManager) syncer() {
// Start and ensure cleanup of sync mechanisms
pm.fetcher.Start()
defer pm.fetcher.Stop()
defer pm.downloader.Terminate()
// Wait for different events to fire synchronisation operations
forceSync := time.NewTicker(forceSyncCycle)
defer forceSync.Stop()
for {
select {
case <-pm.newPeerCh:
// Make sure we have peers to select from, then sync
if pm.peers.Len() < minDesiredPeerCount {
break
}
go pm.synchronise(pm.peers.BestPeer())
case <-forceSync.C:
// Force a sync even if not enough peers are present
go pm.synchronise(pm.peers.BestPeer())
case <-pm.noMorePeers:
return
}
}
}
pm.fetcher.Start()啟動 fetcher,輔助同步區塊資料
當P2P server執行 ProtocolManager 的p2p.Protocol 的Run指標的時候會send pm.newPeerCh,這時候選擇最優的網路節點(TD 總難度最大的)啟動pm.synchronise(pm.peers.BestPeer()) goroutine。
- pm.txsyncLoop()方法
func (pm *ProtocolManager) txsyncLoop() {
var (
pending = make(map[discover.NodeID]*txsync)
sending = false // whether a send is active
pack = new(txsync) // the pack that is being sent
done = make(chan error, 1) // result of the send
)
// send starts a sending a pack of transactions from the sync.
send := func(s *txsync) {
// Fill pack with transactions up to the target size.
size := common.StorageSize(0)
pack.p = s.p
pack.txs = pack.txs[:0]
for i := 0; i < len(s.txs) && size < txsyncPackSize; i++ {
pack.txs = append(pack.txs, s.txs[i])
size += s.txs[i].Size()
}
// Remove the transactions that will be sent.
s.txs = s.txs[:copy(s.txs, s.txs[len(pack.txs):])]
if len(s.txs) == 0 {
delete(pending, s.p.ID())
}
// Send the pack in the background.
s.p.Log().Trace("Sending batch of transactions", "count", len(pack.txs), "bytes", size)
sending = true
go func() { done <- pack.p.SendTransactions(pack.txs) }()
}
// pick chooses the next pending sync.
pick := func() *txsync {
if len(pending) == 0 {
return nil
}
n := rand.Intn(len(pending)) + 1
for _, s := range pending {
if n--; n == 0 {
return s
}
}
return nil
}
for {
select {
case s := <-pm.txsyncCh:
pending[s.p.ID()] = s
if !sending {
send(s)
}
case err := <-done:
sending = false
// Stop tracking peers that cause send failures.
if err != nil {
pack.p.Log().Debug("Transaction send failed", "err", err)
delete(pending, pack.p.ID())
}
// Schedule the next send.
if s := pick(); s != nil {
send(s)
}
case <-pm.quitSync:
return
}
}
}
當從網路節點同步過來最新的交易資料後,本地也會把新同步下來的交易資料廣播給網路中的其他節點。這四個goroutine 基本上就在不停的做廣播區塊、廣播交易,同步到區塊、同步到交易,再廣播區塊、廣播交易。