bzoj1002 [FJOI2007]輪狀病毒 矩陣樹定理
阿新 • • 發佈:2018-12-23
Description
求這樣一個東西的生成樹方案數量
Solution
正解可能是dp啥的,直接上矩陣樹定理然後套高精度就完事兒了
如果把矩陣寫出來可以發現對角線上全是3,然後兩邊都是-1。找一波規律可以發現f[n]=3f[n-1]-f[n-2]+2
Code
#include <stdio.h>
#include <string.h>
#include <algorithm>
#define rep(i,st,ed) for (int i=st;i<=ed;++i)
#define drp(i,st,ed) for (int i=st;i>=ed;--i)
#define fill(x,t) memset(x,t,sizeof(x))
const int MOD=1000;
const int N=105;
const int L=105;
struct num {
int s[L],len;
inline bool operator ==(num b) {
num a=*this;
if (a.len!=b.len) return 0;
drp(i,a.len,1) if (a.s[i]!=b.s[i]) return 0;
return 1;
}
inline bool operator !=(num b) {
return !(*this==b);
}
inline bool operator <(num b) {
num a=*this;
if (a.len<b.len) return 1;
if (a.len>b.len) return 0;
drp(i,a.len,1) {
if (a.s[i]<b.s[i]) return 1;
else if (a.s[i]>b.s[i]) return 0;
}
return 0;
}
inline bool operator <=(num b) {
num a=*this;
if ( a<b||a==b) return 1;
return 0;
}
inline bool operator >(num b) {
num a=*this;
if (a.len>b.len) return 1;
if (a.len<b.len) return 0;
drp(i,a.len,1) {
if (a.s[i]>b.s[i]) return 1;
else if (a.s[i]<b.s[i]) return 0;
}
return 0;
}
inline bool operator >=(num b) {
num a=*this;
if (a>b||a==b) return 1;
return 0;
}
inline num operator +(num b) {
num a=*this,c=(num) { {0},std:: max(a.len,b.len)};
int v=0;
rep(i,1,c.len) {
c.s[i]=(a.s[i]+b.s[i]+v)%MOD;
v=(a.s[i]+b.s[i]+v)/MOD;
}
if (v) {
c.len+=1;
c.s[c.len]=v;
}
return c;
}
inline num operator -(num b) {
num a=*this,c=(num) { {0},std:: max(a.len,b.len)};
rep(i,1,c.len) {
c.s[i]=a.s[i]-b.s[i];
if (c.s[i]<0) {
c.s[i]+=MOD;
a.s[i+1]-=1;
}
}
while (!c.s[c.len]&&c.len>1) c.len-=1;
return c;
}
inline num operator *(num b) {
num a=*this,c=(num) { {0},a.len+b.len};
rep(i,1,a.len) {
rep(j,1,b.len) {
c.s[i+j-1]+=a.s[i]*b.s[j];
}
}
rep(i,1,a.len+b.len) {
c.s[i+1]+=c.s[i]/MOD;
c.s[i]%=MOD;
}
while (!c.s[c.len]&&c.len>1) c.len-=1;
return c;
}
inline num operator /(int b) {
num a=*this,c=(num) { {0},a.len};
int v=0;
drp(i,len,1) {
int t=v*MOD+a.s[i];
c.s[i]=t/b;
v=t%b;
}
while (!c.s[c.len]&&c.len>1) c.len-=1;
return c;
}
inline void read() {
fill(s,0); len=0;
char st[L];
scanf("%s",st);
int v=0,i;
for (i=strlen(st)-1; i >= 3; i-=3) {
rep(j,i-2,i) v=v*10+st[j]-'0';
s[++len]=v;
v=0;
}
rep(j,0,i) v=v*10+st[j]-'0';
s[++len]=v;
}
inline void output() {
num tmp=*this;
int i=tmp.len;
while (!tmp.s[i]&&i>1) {
i-=1;
}
printf("%d",tmp.s[i]);
drp(j,i-1,1) {
int v=tmp.s[j];
int f[5]= {0};
rep(k,1,3) {
f[k]=v%10;
v/=10;
}
drp(k,3,1) printf("%d",f[k]);
}
printf("\n");
}
} f[N],two,thr;
int main(void) {
int n; scanf("%d",&n);
two.len=1; two.s[1]=2;
thr.len=1; thr.s[1]=3;
f[1].len=f[1].s[1]=f[2].len=1;
f[2].s[1]=5;
rep(i,3,n) f[i]=f[i-1]*thr-f[i-2]+two;
f[n].output();
return 0;
}