1. 程式人生 > >Codeforces 1083C Max Mex

Codeforces 1083C Max Mex

題意

給出一棵\(n\)個節點,以\(1\)為根的樹。

每個節點都有一個權值\(v_i\)\(v_i \in [0,n-1]\)且沒有兩個節點的\(v_i\)相同。

定義\(V\)為樹上某條路徑上的節點的\(v_i\)組成的集合。

給出\(q\)次操作,每次交換兩個節點的\(v_i\)或者詢問所有可能的\(V\)\(mex\)\(max\)

Solution

首先設\(pos_i\)為權值為\(i\)的節點的編號。

那麼每次詢問的答案就是找一個最大的\(k\)滿足,\(pos_i(i \in [0,k-1])\)在同一條鏈上。

考慮線段樹來維護這個東西。

線段樹上每個節點維護一個數對\((x,y)\)

,如果這個區間內節點不在同一個鏈上這個數對就是\((-1,-1)\),否則就是這些節點所在的那條鏈的兩端。

合併左右兒子資訊的時候,如果其中有一個\((-1,-1)\)則當前節點肯定也是\((-1,-1)\),否則當前這個區間的節點所在的那條鏈的兩端肯定是左右兒子的\((x,y)\)其中的兩個數,暴力一波就行了。

#include<bits/stdc++.h>
#define For(i,x,y) for (register int i=(x);i<=(y);i++)
#define Dow(i,x,y) for (register int i=(x);i>=(y);i--)
#define cross(i,k) for (register int i=first[k];i;i=last[i])
#define Debug(x) cerr<<#x<<"="<<(x)<<endl
#define mp make_pair
#define fi first
#define se second
using namespace std;
typedef long long ll;
typedef unsigned long long ull;
typedef pair<int,int> pa;
inline ll read(){
    ll x=0;int ch=getchar(),f=1;
    while (!isdigit(ch)&&(ch!='-')&&(ch!=EOF)) ch=getchar();
    if (ch=='-'){f=-1;ch=getchar();}
    while (isdigit(ch)){x=(x<<1)+(x<<3)+ch-'0';ch=getchar();}
    return x*f;
}
namespace Fuck{ 
    const int N = 2e5+10;
    int n,q,a[N],fa[N],pos[N];
    int tot,first[N],to[N<<1],last[N<<1];
    inline void Add(int x,int y){to[++tot]=y,last[tot]=first[x],first[x]=tot;}
    int cnt,size[N],son[N],dep[N];
    inline void dfs(int u){
        size[u]=1,dep[u]=dep[fa[u]]+1;
        cross(i,u){
            dfs(to[i]),size[u]+=size[to[i]];
            son[u]=size[to[i]]>size[son[u]]?to[i]:son[u];
        }
    }
    int t[N],l[N];
    inline void dfs(int u,int Top){
        l[u]=++cnt,t[u]=Top;
        if (son[u]) dfs(son[u],Top);
        cross(i,u) if (to[i]!=son[u]) dfs(to[i],to[i]);
    }
    inline int Lca(int x,int y){
        for (;t[x]!=t[y];x=fa[t[x]]) if (dep[t[x]]<dep[t[y]]) swap(x,y);
        return dep[x]<dep[y]?x:y;
    }
    inline bool In(int x,int y){return l[x]<=l[y]&&l[y]<=l[x]+size[x]-1;}//y in x?
    int tmp[4];
    inline pa operator + (const pa &a,const pa &b){
        tmp[0]=a.fi,tmp[1]=a.se,tmp[2]=b.fi,tmp[3]=b.se;
        For(i,0,3) if (tmp[i]==-1) return mp(-1,-1);
        if (tmp[1]==tmp[2]&&tmp[2]==tmp[3]&&tmp[0]==tmp[1]) return mp(tmp[0],tmp[1]);
        For(i,0,3)
            For(j,i+1,3){
                if (tmp[i]==tmp[j]) continue;
                int lca=Lca(tmp[i],tmp[j]),flag=1;
                For(k,0,3)
                    if (k!=i&&k!=j)
                        if (!In(lca,tmp[k])||(In(lca,tmp[k])&&!(In(tmp[k],tmp[i])||In(tmp[k],tmp[j])))){flag=0;break;}
                if (flag) return mp(tmp[i],tmp[j]);
            }
        return mp(-1,-1);
    }
    pa v[N<<2];
    inline void push_up(int u){v[u]=v[u<<1]+v[u<<1^1];}
    inline void Build(int u,int l,int r){
        if (l==r){v[u]=l==n+1?mp(-1,-1):mp(pos[l],pos[l]);return;}int mid=l+r>>1;
        Build(u<<1,l,mid),Build(u<<1^1,mid+1,r),push_up(u);
    }   
    inline void update(int u,int l,int r,int ql){
        if (l==r){v[u]=mp(pos[l],pos[l]);return;}
        int mid=l+r>>1;(ql<=mid)?update(u<<1,l,mid,ql):update(u<<1^1,mid+1,r,ql);
        push_up(u);
    }
    inline int Query(int u,int l,int r,pa x){
        if (l==r) return l;
        int mid=l+r>>1;pa tmp=x+v[u<<1];
        if (tmp.fi!=-1) return Query(u<<1^1,mid+1,r,tmp);
            else return Query(u<<1,l,mid,x);
    }
    inline void Main(){
        n=read();
        For(i,1,n) a[i]=read()+1,pos[a[i]]=i;
        For(i,2,n) fa[i]=read(),Add(fa[i],i);
        dfs(1),dfs(1,1),Build(1,1,n+1),q=read();
        while (q--){
            int opt=read();
            if (opt==1){
                int x=read(),y=read();
                swap(a[x],a[y]),pos[a[x]]=x,pos[a[y]]=y;
                update(1,1,n+1,a[x]),update(1,1,n+1,a[y]);
            } else printf("%d\n",Query(1,1,n+1,mp(pos[1],pos[1]))-1);
        }       
    }
}
int main(){
    Fuck::Main();
}