字尾陣列(好)uva10829
L-Gap Substrings
If a string is in the form UVU, where Uis not empty, and V has exactly L characters, we say UVUis an L-Gap string. For example, abcbabc is a 1-Gapstring. xyxyxyxyxy is both a 2-Gap string and also a 6-Gapstring, but not a 10-Gap string (because U is non-empty).
Given a string s, and a positiveinteger g
Input
Thefirst line contains a single integer t(1<=t<=10), the number oftest cases. Each of the t followings contains an integer g(1<=g<=10)followed bya string s.
Output
For each test case, print thecase number and the number of g-Gapsubstrings. Look at the output for sample input for details.
Sample Input Output for Sample Input
2 1 bbaabaaaaa 5 abxxxxxab |
Case 1: 7 Case 2: 1 |
題意:給出一個字串,找出滿足UVU形式的子串有多少個
思路:列舉U的長度,如bbaabaaaaa l = 2時,分成 bb | aa | ba | aa| aa,那麼每個U肯定要包含劃分後的一個端點 ,然後向兩邊進行匹配,這個跟poj3693很像,兩邊匹配完之後假設匹配長度為len,那麼就有len-l個子串符合要求
#include<iostream>
#include<cstdio>
#include<string>
#include<cstring>
#include<vector>
#include<cmath>
#include<queue>
#include<stack>
#include<map>
#include<set>
#include<algorithm>
using namespace std;
const int maxn=50010;
typedef long long LL;
int sa1[maxn],height1[maxn],c[maxn],t[maxn],t2[maxn],sa2[maxn],height2[maxn];
char s[maxn],s1[maxn];
int g,d1[maxn][20],d2[maxn][20],rank1[maxn],rank2[maxn];
int n;
void build_sa(int *sa,int m,int n,char *s)
{
int *x=t,*y=t2;
for(int i=0;i<m;i++)c[i]=0;
for(int i=0;i<n;i++)c[x[i]=s[i]]++;
for(int i=1;i<m;i++)c[i]+=c[i-1];
for(int i=n-1;i>=0;i--)sa[--c[x[i]]]=i;
for(int k=1;k<=n;k<<=1)
{
int p=0;
for(int i=n-k;i<n;i++)y[p++]=i;
for(int i=0;i<n;i++)if(sa[i]>=k)y[p++]=sa[i]-k;
for(int i=0;i<m;i++)c[i]=0;
for(int i=0;i<n;i++)c[x[y[i]]]++;
for(int i=1;i<m;i++)c[i]+=c[i-1];
for(int i=n-1;i>=0;i--)sa[--c[x[y[i]]]]=y[i];
swap(x,y);p=1;
x[sa[0]]=0;
for(int i=1;i<n;i++)
x[sa[i]]=(y[sa[i]]==y[sa[i-1]]&&y[sa[i]+k]==y[sa[i-1]+k])?p-1:p++;
if(p>=n)break;
m=p;
}
}
void getheight(int *sa,int n,int *rank,int *height,char *s)
{
int k=0;
for(int i=1;i<=n;i++)rank[sa[i]]=i;
for(int i=0;i<n;i++)
{
if(k)k--;
int j=sa[rank[i]-1];
while(s[i+k]==s[j+k])k++;
height[rank[i]]=k;
}
}
void initRMQ(int n,int d[][20],int *height)
{
for(int i=0;i<=n;i++)d[i][0]=height[i];
for(int j=1;(1<<j)<=n;j++)
for(int i=1;i+(1<<(j-1))<=n;i++)
d[i][j]=min(d[i][j-1],d[i+(1<<(j-1))][j-1]);
}
int LCP(int *rank,int d[][20],int a,int b)
{
int x=rank[a],y=rank[b];
if(x>y)swap(x,y);
x++;
int k=0;
while((1<<(k+1))<=y-x+1)k++;
return min(d[x][k],d[y-(1<<k)+1][k]);
}
void solve()
{
LL ans=0;
for(int l=1;l<=n;l++)
{
for(int i=0;i+l+g<n;i+=l)
{
int k=LCP(rank1,d1,i,i+l+g);
k=min(l,k);
int k1=LCP(rank2,d2,n-i-1,n-i-l-g-1);
k1=min(k1,l);
k=k+k1;
if(k>=l)ans+=k-l;
}
}
printf("%lld\n",ans);
}
int main()
{
int T,cas=1;
scanf("%d",&T);
while(T--)
{
scanf("%d%s",&g,s);
n=strlen(s);
for(int i=0;i<=n;i++)s1[i]=s[n-1-i];
build_sa(sa1,123,n+1,s);
getheight(sa1,n,rank1,height1,s);
initRMQ(n,d1,height1);
build_sa(sa2,123,n+1,s1);
getheight(sa2,n,rank2,height2,s1);
initRMQ(n,d2,height2);
printf("Case %d: ",cas++);
solve();
}
return 0;
}