1. 程式人生 > >線段樹區間查詢

線段樹區間查詢

給定一個區間,判斷線段樹中的區間在該區間內的最小權值;
查詢的思想是選出一些區間,使他們相連後恰好涵蓋整個查詢區間,因此線段樹適合解決“相鄰的區間的資訊可以被合併成兩個區間的並區間的資訊”的問題。
這個部落格介紹的很好,尤其是下面的舉例非常的詳細。
[https://www.cnblogs.com/TenosDoIt/p/3453089.html#g]

程式碼:

#include<cstdio>
#include<algorithm>
#include<iostream>
#include<cstring>
#include<cmath>
#define MAXN 1000
using namespace std; int array[MAXN]; struct segtreenode { int value; } segtree[MAXN]; void build(int node,int start,int end) { if(start==end) { segtree[node].value=array[start]; } else { int mid=(start+end)>>1; build(2*node,start,mid); build(2
*node+1,mid+1,end); segtree[node].value=segtree[2*node].value>segtree[2*node+1].value?segtree[2*node+1].value:segtree[2*node].value; } } int query(int node,int start,int end,int left,int right) { if(left>end||right<start) { return 1000; } if(left<=start&&right
>=end) { return segtree[node].value; } int mid=(start+end)>>1; int p1=query(2*node,start,mid,left,right); int p2=query(2*node+1,mid+1,end,left,right); return p1>p2?p2:p1; } int main() { int n; cin>>n; for(int i=0; i<n; i++) { cin>>array[i]; } build(1,0,n-1); for(int i=1; i<=2*n+3; i++) { cout<<"seg"<<i<<"="<<segtree[i].value<<endl; } int left,right; cin>>left>>right; cout<<query(1,0,n-1,left,right)<<endl; }

這裡寫圖片描述