Codeforces Round #382 (Div. 2) D. Taxes(分拆素數和)
D. Taxes
time limit per test2 seconds
memory limit per test256 megabytes
inputstandard input
outputstandard output
Mr. Funt now lives in a country with a very specific tax laws. The total income of mr. Funt during this year is equal to n (n ≥ 2) burles and the amount of tax he has to pay is calculated as the maximum divisor of n (not equal to n, of course). For example, if n = 6 then Funt has to pay 3 burles, while for n = 25 he needs to pay 5 and if n = 2 he pays only 1 burle.
As mr. Funt is a very opportunistic person he wants to cheat a bit. In particular, he wants to split the initial n in several parts n1 + n2 + … + nk = n (here k is arbitrary, even k = 1 is allowed) and pay the taxes for each part separately. He can’t make some part equal to 1 because it will reveal him. So, the condition ni ≥ 2 should hold for all i from 1 to k.
Ostap Bender wonders, how many money Funt has to pay (i.e. minimal) if he chooses and optimal way to split n in parts.
Input
The first line of the input contains a single integer n (2 ≤ n ≤ 2·109) — the total year income of mr. Funt.
Output
Print one integer — minimum possible number of burles that mr. Funt has to pay as a tax.
Examples
input
4
output
2
input
27
output
3
【中文題意】
給出一個整數n,n可以由很多其他數的和組成,但不能出現1,當然也可以不拆分,然後問你:給你個n然後讓你求n的最大因子為多少(不包括n本身),然後如果n被拆分的話,就是求拆分出來的這些數的因子和,規矩同上。
【思路分析】
哥德巴赫猜想:任何一個大於二的偶數都可以分解為兩個素數和。
然後假如是奇數的話,直接特判下就好了。
【AC程式碼】
#include <cstdio>
#include <algorithm>
#include <cmath>
#include <cstring>
using namespace std;
#define LL long long
bool isprime(LL n)
{
for(LL i=2; i*i<=n; i++)
{
if((n%i)==0)
{
return false;
}
}
return true;
}
int main()
{
LL n;
while(~scanf("%I64d",&n))
{
if(n==2)
{
printf("1\n");
}
else if(~n&1)
{
printf("2\n");
}
else
{
if(isprime(n)) printf("1\n");
else if(isprime(n-2))
{
printf("2\n");
}
else
{
printf("3\n");
}
}
}
return 0;
}