1. 程式人生 > >【矩陣加速】[SPOJ SEQ]Recursive Sequence

【矩陣加速】[SPOJ SEQ]Recursive Sequence

題目描述

Sequence (ai) of natural numbers is defined as follows:

ai=bi(ik)
ai=c1ai1+c2ai2+...+ckaik(i>k)

where bj and cj are given natural numbers for 1jk. Your task is to compute an for given n and output it modulo 109.

Input

On the first row there is the number C of test cases (equal to about 1000).
Each test contains four lines:

k - number of elements of (c) and (b) (1 <= k <= 10)
b1,…,bk - k natural numbers where 0 <= bj <= 109 separated by spaces
c1,…,ck - k natural numbers where 0 <= cj <= 109 separated by spaces
n - natural number (1 <= n <= 109)

Output

Exactly C lines, one for each test case: an modulo 10

9

Example

Input:

3
3
5 8 2
32 54 6
2
3
1 2 3
4 5 6
6
3
24 354 6
56 57 465
98765432

Output:

8
714
257599514

題目分析

矩陣加速裸題

程式碼

#include <cstdio>
#include <iostream>
#include <cstring>
using namespace std;
const int MAXN = 4;
const long long MOD = 1e9
; struct Matrix { long long Ma[MAXN+10][MAXN+10]; int n, m; void Clear(int u, int un, int um){ n = un, m = um; for(int i=1;i<=un;i++) for(int j=1;j<=um;j++) Ma[i][j] = 0; if(u) for(int i=1;i<=un;i++) Ma[i][i] = 1; } Matrix operator* (const Matrix& ma) { Matrix ret ; ret.Clear(0, n, m); for(int i=1;i<=n;i++){ for(int j=1;j<=ma.m;j++){ for(int k=1;k<=ma.n;k++){ ret.Ma[i][j] += Ma[i][k] * ma.Ma[k][j]; ret.Ma[i][j] %= MOD; } } } return ret; } }; Matrix Mpow(Matrix m, int p){ Matrix ret; if(p == 0){ ret.Clear(1, 2, 2); return ret; }else if(p == 1) return m; ret = Mpow(m, p/2); if(p%2 == 0) return ret * ret; return (ret * ret) * m; } int main(){ int T; scanf("%d", &T); while(T--){ Matrix str, _base; int n; scanf("%d", &n); str.Clear(0, n, n); _base.Clear(0, n, n); for(int i=1;i<=n;i++) scanf("%lld", &_base.Ma[1][n-i+1]); for(int i=1;i<=n;i++){ scanf("%lld", &str.Ma[i][1]); str.Ma[i][i+1] = 1; } int k; scanf("%d", &k); if(k <= n) printf("%lld\n", _base.Ma[1][n-k+1]); else{ int ps = k - n; Matrix ans = Mpow(str, ps); long long tans = 0; for(int i=1;i<=n;i++) tans += (_base.Ma[1][i] * ans.Ma[i][1])%MOD; printf("%lld\n", (tans%MOD+MOD)%MOD); } } return 0; }