1. 程式人生 > >leetcode 587. Erect the Fence 最短圍欄 + 凸包優化

leetcode 587. Erect the Fence 最短圍欄 + 凸包優化

There are some trees, where each tree is represented by (x,y) coordinate in a two-dimensional garden. Your job is to fence the entire garden using the minimum length of rope as it is expensive. The garden is well fenced only if all the trees are enclosed. Your task is to help find the coordinates of trees which are exactly located on the fence perimeter.

Example 1:
Input: [[1,1],[2,2],[2,0],[2,4],[3,3],[4,2]]
Output: [[1,1],[2,0],[4,2],[3,3],[2,4]]
Explanation:
這裡寫圖片描述

Example 2:
Input: [[1,2],[2,2],[4,2]]
Output: [[1,2],[2,2],[4,2]]
Explanation:
這裡寫圖片描述

Even you only have trees in a line, you need to use rope to enclose them.
Note:

All trees should be enclosed together. You cannot cut the rope to enclose trees that will separate them in more than one group.
All input integers will range from 0 to 100.
The garden has at least one tree.
All coordinates are distinct.
Input points have NO order. No order required for output.

本題題意很簡單,就是尋找一個凸多邊形來找到包含所有節點的,這個是經典的問題,這個是參考這個教程的做法[LeetCode] Erect the Fence 豎立柵欄

程式碼如下:

#include <iostream>
#include <vector>
#include <map>
#include <set>
#include <queue>
#include <stack>
#include <string>
#include <climits>
#include <algorithm>
#include <sstream> #include <functional> #include <bitset> #include <numeric> #include <cmath> using namespace std; /* struct Point { int x; int y; Point() : x(0), y(0) {} Point(int a, int b) : x(a), y(b) {} }; */ class Solution { public: vector<Point> outerTrees(vector<Point>& points) { vector<Point> res; Point first = points[0]; int firstIdx = 0, n = points.size(); for (int i = 1; i < n; ++i) { if (points[i].x < first.x) { first = points[i]; firstIdx = i; } } res.push_back(first); Point cur = first; int curIdx = firstIdx; while (true) { Point next = points[0]; int nextIdx = 0; for (int i = 1; i < n; ++i) { if (i == curIdx) continue; int cross = crossProduct(cur, points[i], next); if (nextIdx == curIdx || cross > 0 || (cross == 0 && dist(points[i], cur) > dist(next, cur))) { next = points[i]; nextIdx = i; } } for (int i = 0; i < n; ++i) { if (i == curIdx) continue; int cross = crossProduct(cur, points[i], next); if (cross == 0) { if (check(res, points[i])) res.push_back(points[i]); } } cur = next; curIdx = nextIdx; if (curIdx == firstIdx) break; } return res; } int crossProduct(Point A, Point B, Point C) { int BAx = A.x - B.x; int BAy = A.y - B.y; int BCx = C.x - B.x; int BCy = C.y - B.y; return BAx * BCy - BAy * BCx; } int dist(Point A, Point B) { return (A.x - B.x) * (A.x - B.x) + (A.y - B.y) * (A.y - B.y); } bool check(vector<Point>& res, Point p) { for (Point r : res) { if (r.x == p.x && r.y == p.y) return false; } return true; } };