1. 程式人生 > >(AB)Codeforces Round #528 (Div. 2, based on Technocup 2019 Elimination Round

(AB)Codeforces Round #528 (Div. 2, based on Technocup 2019 Elimination Round

A. Right-Left Cipher time limit per test 1 second memory limit per test 256 megabytes input standard input output standard output

Polycarp loves ciphers. He has invented his own cipher called Right-Left.

Right-Left cipher is used for strings. To encrypt the string s=s1s2sns=s1s2…sn Polycarp uses the following algorithm:

  • he writes down s1s1,
  • he appends the current word with 
s2">s2s2 (i.e. writes down s2s2 to the right of the current result),
  • he prepends the current word with s3s3 (i.e. writes down s3s3 to the left of the current result),
  • he appends the current word with s4s4 (i.e. writes down s4s4 to the right of the current result),
  • he prepends the current word with s5s5 (i.e. writes down s5s5 to the left of the current result),
  • and so on for each position until the end of ss.
  • For example, if ss="techno" the process is: "t" → "te" → "cte" 

    →">→ "cteh" → "ncteh" → "ncteho". So the encrypted ss="techno" is "ncteho".

    Given string tt — the result of encryption of some string ss. Your task is to decrypt it, i.e. find the string ss.

    Input

    The only line of the input contains tt — the result of encryption of some string ss. It contains only lowercase Latin letters. The length of tt is between 11 and 5050, inclusive.

    Output

    Print such string ss that after encryption it equals tt.

    Examples input
    ncteho
    
    output
    techno
    
    input
    erfdcoeocs
    
    output
    codeforces
    
    input
    z
    
    output
    z
    我好菜啊...腦袋都鏽住了!
     1 #include <iostream>
     2 #include <algorithm>
     3 #include <cstdlib>
     4 #include <cstring>
     5 
     6 using namespace std;
     7 
     8 int main(){
     9     string str{"0"};
    10     string out{"0"};
    11     //memset(s,'\0',sizeof(s));
    12     //memset(out,'\0',sizeof(out));
    13     while(cin>>str){
    14         int len=str.size();
    15         out=str;
    16         if(len==1 || len==2){
    17             cout<<str<<endl;
    18             continue;
    19         }
    20         int tmp=0;
    21         int len_right=0;
    22         int len_left=0;
    23         if(len%2==1){
    24             tmp=(len-1)/2;
    25         }else{
    26             tmp=len/2-1;
    27         }
    28         out[0]=str[tmp];
    29         out[1]=str[tmp+1];
    30         for(int i=tmp+2,j=3;i<len;i++,j++,j++){
    31             out[j]=str[i];
    32         }
    33         for(int i=tmp-1,j=2;i>=0;i--,j++,j++){
    34             out[j]=str[i];
    35         }
    36         cout<<out<<endl;
    37         //memset(str,'\0',sizeof(str));
    38         //memset(out,'\0',sizeof(out));
    39 
    40 
    41     }
    42 
    43 
    44 
    45 
    46     return 0;
    47 }
    View Code B. Div Times Mod time limit per test 1 second memory limit per test 256 megabytes input standard input output standard output

    Vasya likes to solve equations. Today he wants to solve (x div k)(xmodk)=n(x div k)⋅(xmodk)=n, where divdiv and modmod stand for integer division and modulo operations (refer to the Notes below for exact definition). In this equation, kk and nn are positive integer parameters, and xx is a positive integer unknown. If there are several solutions, Vasya wants to find the smallest possible xx. Can you help him?

    Input

    The first line contains two integers nn and kk (1n1061≤n≤106, 2k10002≤k≤1000).

    Output

    Print a single integer xx — the smallest positive integer solution to (x div k)(xmodk)=n(x div k)⋅(xmodk)=n. It is guaranteed that this equation has at least one positive integer solution.

    Examples input
    6 3
    
    output
    11
    
    input
    1 2
    
    output
    3
    
    input
    4 6
    
    output
    10
    
    Note

    The result of integer division a div ba div b is equal to the largest integer cc such that bcab⋅c≤a. aa modulo bb (shortened amodbamodb) is the only integer cc such that 0c<b0≤c<b, and aca−c is divisible by bb.

    In the first sample, 11 div 3=311 div 3=3 and 11mod3=211mod3=2. Since 32=63⋅2=6, then x=11x=11 is a solution to (x div 3)(xmod3)=6(x div 3)⋅(xmod3)=6. One can see that 1919 is the only other positive integer solution, hence 1111 is the smallest one.

    思路:讓找一個最小的x,使得(x/k)*(x%k)==n,如果對x暴力列舉肯定會超時啊,所以可以從x%k這裡下手,x%k的值一定>=0 且<k,又因為n不可能為0,所以x%k是大於0的.所以在1~(k-1)之間列舉k.

    再設x%k=i,上式可以變成(x-i)/k * i =n,所以x=n/i * k +i.

    #include <bits/stdc++.h>
    using namespace std;
    using LL = long long;
    
    int main(){
        LL n,k;
        while(cin>>n>>k){
            LL x(LONG_MAX);
            for(LL i=1;i<k;i++){
                if(n%i!=0) continue;
                LL tmp=n/i*k+i;
                x=(x<tmp?x:tmp);
            }
            cout<<x<<endl;
        }    
        return 0;
    }
    View Code