1. 程式人生 > >Score After Flipping Matrix

Score After Flipping Matrix

We have a two dimensional matrix A where each value is 0 or 1.

A move consists of choosing any row or column, and toggling each value in that row or column: changing all 0s to 1s, and all 1s to 0s.

After making any number of moves, every row of this matrix is interpreted as a binary number, and the score of the matrix is the sum of these numbers.

Return the highest possible score.

 

Example 1:

Input: [[0,0,1,1],[1,0,1,0],[1,1,0,0]]
Output: 39
Explanation:
Toggled to [[1,1,1,1],[1,0,0,1],[1,1,1,1]].
0b1111 + 0b1001 + 0b1111 = 15 + 9 + 15 = 39

 

Note:

  1. 1 <= A.length <= 20
  2. 1 <= A[0].length <= 20
  3. A[i][j] is 0
     or 1.

題目理解:

給定一個數組,只含有0和1.可以對這個陣列的某行或者某列進行跳變,即0變1,1變0,最後將每一行組成一個二進位制數,返回這些數的可能的最大的和

解題思路:

既然是二進位制數,那左邊的位代表的數值就大,所以我們要儘量將陣列左邊的數字變為1.又因為可以對某一行進行跳變,因此我們總是可以將第一列的全部數字變為1,而且我們必須這樣做,因為最左邊的位有最大的數值。在將第一列變為1之後我們就不再對行做跳變了,因為我們需要保持第一列全為1.我們之後只對每一列進行跳變,使得每一列中都有儘量多的1,最終將數字相加就好了。相加的時候其實不需要算出來每一行代表的十進位制數,我們加上每一位代表的數就行了

程式碼如下:

class Solution {
    public int matrixScore(int[][] A) {
        int row = A.length;
        if(row == 0)
        	return 0;
        int col = A[0].length;
        int res = row * (1 << (col - 1));
        for(int i = 0; i < row; i++) {
        	if(A[i][0] == 1)
        		continue;
        	for(int j = 0; j < col; j++) {
        		A[i][j] = (A[i][j] + 1) % 2;
        	}
        }
        for(int j = 1; j < col; j++) {
        	int ct = 0;
        	for(int i = 0; i < row; i++) {
        		ct += A[i][j];
        	}
        	ct = Math.max(ct, row - ct);
        	res += ct * (1 << (col - 1 - j));
        }
        return res;
    }
}