Score After Flipping Matrix
阿新 • • 發佈:2018-12-25
We have a two dimensional matrix A
where each value is 0
or 1
.
A move consists of choosing any row or column, and toggling each value in that row or column: changing all 0
s to 1
s, and all 1
s to 0
s.
After making any number of moves, every row of this matrix is interpreted as a binary number, and the score of the matrix is the sum of these numbers.
Return the highest possible score.
Example 1:
Input: [[0,0,1,1],[1,0,1,0],[1,1,0,0]] Output: 39 Explanation: Toggled to [[1,1,1,1],[1,0,0,1],[1,1,1,1]]. 0b1111 + 0b1001 + 0b1111 = 15 + 9 + 15 = 39
Note:
1 <= A.length <= 20
1 <= A[0].length <= 20
A[i][j]
is0
1
.
題目理解:
給定一個數組,只含有0和1.可以對這個陣列的某行或者某列進行跳變,即0變1,1變0,最後將每一行組成一個二進位制數,返回這些數的可能的最大的和
解題思路:
既然是二進位制數,那左邊的位代表的數值就大,所以我們要儘量將陣列左邊的數字變為1.又因為可以對某一行進行跳變,因此我們總是可以將第一列的全部數字變為1,而且我們必須這樣做,因為最左邊的位有最大的數值。在將第一列變為1之後我們就不再對行做跳變了,因為我們需要保持第一列全為1.我們之後只對每一列進行跳變,使得每一列中都有儘量多的1,最終將數字相加就好了。相加的時候其實不需要算出來每一行代表的十進位制數,我們加上每一位代表的數就行了
程式碼如下:
class Solution {
public int matrixScore(int[][] A) {
int row = A.length;
if(row == 0)
return 0;
int col = A[0].length;
int res = row * (1 << (col - 1));
for(int i = 0; i < row; i++) {
if(A[i][0] == 1)
continue;
for(int j = 0; j < col; j++) {
A[i][j] = (A[i][j] + 1) % 2;
}
}
for(int j = 1; j < col; j++) {
int ct = 0;
for(int i = 0; i < row; i++) {
ct += A[i][j];
}
ct = Math.max(ct, row - ct);
res += ct * (1 << (col - 1 - j));
}
return res;
}
}