1. 程式人生 > >【AtCoder】ARC086

【AtCoder】ARC086

C - Not so Diverse

題解

選出現次數K多的出來,剩下的都刪除即可

程式碼

#include <bits/stdc++.h>
#define fi first
#define se second
#define pii pair<int,int>
#define pdi pair<db,int>
#define mp make_pair
#define pb push_back
#define enter putchar('\n')
#define space putchar(' ')
#define eps 1e-8
#define mo 974711
#define MAXN 200005
//#define ivorysi
using namespace std;
typedef long long int64;
typedef double db;
template<class T>
void read(T &res) {
    res = 0;char c = getchar();T f = 1;
    while(c < '0' || c > '9') {
    if(c == '-') f = -1;
    c = getchar();
    }
    while(c >= '0' && c <= '9') {
    res = res * 10 + c - '0';
    c = getchar();
    }
    res *= f;
}
template<class T>
void out(T x) {
    if(x < 0) {x = -x;putchar('-');}
    if(x >= 10) {
    out(x / 10);
    }
    putchar('0' + x % 10);
}
int N,K;
int A[MAXN],cnt[MAXN],val[MAXN],tot;
bool cmp(int a,int b) {
    return a > b;
}
void Init() {
    read(N);read(K);
    for(int i = 1 ; i <= N ; ++i) {
    read(A[i]);
    cnt[A[i]]++;
    }
}
void Solve() {
    for(int i = 1 ; i <= N ; ++i) {
    if(cnt[i]) val[++tot] = cnt[i];
    }
    sort(val + 1,val + tot + 1,cmp);
    int ans = 0;
    for(int i = K + 1 ; i <= tot ; ++i) ans += val[i];
    out(ans);enter;
}
int main() {
#ifdef ivorysi
    freopen("f1.in","r",stdin);
#endif
    Init();
    Solve();
}

D - Non-decreasing

題解

用N - 1次操作把序列變成全正或者全負
如果全負用處理成字尾和
如果全正處理成字首和

程式碼

#include <bits/stdc++.h>
#define fi first
#define se second
#define pii pair<int,int>
#define pdi pair<db,int>
#define mp make_pair
#define pb push_back
#define enter putchar('\n')
#define space putchar(' ')
#define eps 1e-8
#define mo 974711
#define MAXN 200005
//#define ivorysi
using namespace std;
typedef long long int64;
typedef double db;
template<class T>
void read(T &res) {
    res = 0;char c = getchar();T f = 1;
    while(c < '0' || c > '9') {
    if(c == '-') f = -1;
    c = getchar();
    }
    while(c >= '0' && c <= '9') {
    res = res * 10 + c - '0';
    c = getchar();
    }
    res *= f;
}
template<class T>
void out(T x) {
    if(x < 0) {x = -x;putchar('-');}
    if(x >= 10) {
    out(x / 10);
    }
    putchar('0' + x % 10);
}
int N;
int a[MAXN];
vector<pii > op;
void Init() {
    read(N);
    for(int i = 1 ; i <= N ; ++i) read(a[i]);
}
void Solve() {
    int t = 1;
    for(int i = 2 ; i <= N ; ++i) {
    if(abs(a[i]) > abs(a[t])) t = i;
    }
    for(int i = 1 ; i <= N ; ++i) {
    if(i != t) {
        op.pb(mp(t,i));
        a[i] += a[t];
    }
    }
    if(a[t] < 0) {
    for(int i = N - 1 ; i >= 1 ; --i) {
        a[i] += a[i + 1];
        op.pb(mp(i + 1,i));
    }
    }
    else {
    for(int i = 2 ; i <= N ; ++i) {
        a[i] += a[i - 1];
        op.pb(mp(i - 1,i));
    }
    }
    out(op.size());enter;
    for(auto k : op) {
    out(k.fi);space;out(k.se);enter;
    }
}
int main() {
#ifdef ivorysi
    freopen("f1.in","r",stdin);
#endif
    Init();
    Solve();
}

E - Smuggling Marbles

題解

這個如果我們每個深度從每個點往上更新,更新的時候把兒子只有一個的點縮掉就顯然不會超過\(N \log N\),但是因為種種原因,在向上BFS的時候需要按深度從大到小排序
題解說有\(O(n)\)做法,我沒細看

程式碼

#include <bits/stdc++.h>
#define fi first
#define se second
#define pii pair<int,int>
#define pdi pair<db,int>
#define mp make_pair
#define pb push_back
#define enter putchar('\n')
#define space putchar(' ')
#define eps 1e-8
#define mo 974711
#define MAXN 200005
//#define ivorysi
using namespace std;
typedef long long int64;
typedef double db;
template<class T>
void read(T &res) {
    res = 0;char c = getchar();T f = 1;
    while(c < '0' || c > '9') {
    if(c == '-') f = -1;
    c = getchar();
    }
    while(c >= '0' && c <= '9') {
    res = res * 10 + c - '0';
    c = getchar();
    }
    res *= f;
}
template<class T>
void out(T x) {
    if(x < 0) {x = -x;putchar('-');}
    if(x >= 10) {
    out(x / 10);
    }
    putchar('0' + x % 10);
}
const int MOD = 1000000007;
int N,ans;
int p[MAXN],dep[MAXN],pw[MAXN];
vector<int> lay[MAXN];
int vis[MAXN],tims,cnt[MAXN],dp[MAXN][2];
vector<int> son[MAXN];
int inc(int a,int b) {
    return a + b >= MOD ? a + b - MOD : a + b;
}
int mul(int a,int b) {
    return 1LL * a * b % MOD;
}
void update(int &x,int y) {
    x = inc(x,y);
}
int fpow(int x,int c) {
    int res = 1,t = x;
    while(c) {
    if(c & 1) res = mul(res,t);
    t = mul(t,t);
    c >>= 1;
    }
    return res;
}
void Init() {
    read(N);
    for(int i = 1 ; i <= N ; ++i) read(p[i]);
    for(int i = 1 ; i <= N ; ++i) dep[i] = dep[p[i]] + 1;
    for(int i = 1 ; i <= N ; ++i) {
    lay[dep[i]].pb(i);
    }
    pw[0] = 1;
    for(int i = 1 ; i <= N + 1 ; ++i) pw[i] = mul(pw[i - 1],2);
}
auto cmp = [](int a,int b){return dep[a] < dep[b];};
priority_queue<int, vector<int>, decltype(cmp)> Q(cmp);
void BFS() {
    while(!Q.empty()) {
    int u = Q.top();Q.pop();
    if(vis[p[u]] != tims) {
        Q.push(p[u]);
        vis[p[u]] = tims;
        son[p[u]].clear();
        dp[p[u]][0] = dp[p[u]][1] = 0;
    }
    if(son[u].size() == 1){
        if(u != 0) {
        p[son[u][0]] = p[u];
        son[p[u]].pb(son[u][0]);
        }
    }
    else if(u != 0) son[p[u]].pb(u);
    if(son[u].size() > 1 || u == 0) {
        int s1 = 1,s2 = 1;
        for(auto v : son[u]) {
        s1 = mul(s1,dp[v][0]);
        s2 = mul(s2,inc(dp[v][0],dp[v][1]));
        }
        for(auto v : son[u]) {
        update(dp[u][1],mul(s1, mul(fpow(dp[v][0], MOD - 2), dp[v][1])));
        }
        dp[u][0] = inc(s2, MOD - dp[u][1]);
    }
    }
}
void Solve() {
    update(ans,pw[N]);
    for(int i = 1 ; i <= N ; ++i) {
    if(!lay[i].size()) break;
    ++tims;
    for(auto k : lay[i]) {
        Q.push(k);vis[k] = tims;
        dp[k][0] = 1;dp[k][1] = 1;
    }
    BFS();
    update(ans,mul(dp[0][1], pw[N + 1 - lay[i].size()]));
    }
    out(ans);enter;
}
int main() {
#ifdef ivorysi
    freopen("f1.in","r",stdin);
#endif
    Init();
    Solve();
    return 0;
}

F - Shift and Decrement

題解

這題有點神仙啊QAQ

首先,如果我們把除二認為是小數,最後再取整,結果也不變
其次A操作進行最多60次就全0了
所以我們認為第0次和第1次A之前的B操作有\(p_0\)個,第1次和第2次A之前的B操作有\(p_1\)個,到最後一次第\(k\)的次數\(p_k\)定義類似

然後我們可以這麼認為
進行了\(B\)操作使得所有數減少了\(P\)
\(P = \sum_{i = 0}^{k - 1} 2^{i}p_{k}\)

然後進行\(k\)\(A\),並且取整

然後進行\(p_k\)\(B\)

\(P\)可以在取模\(2^k\)下進行,變成一次第三個操作,可以節約前兩次用的運算元

然後我們發現對於一個固定的\(k\),我們可以把每個數寫成\(A_{i} = 2^{k}B_{i} + C_{i}\)
如果\(P > C_{i}\),這個數就是\(B_{i} - p_k -1\)
否則這個數就是\(B_{i} - p_k\)

所以我們按照餘數大小排序,\(P\)在某個區間內是等價的

我們要儘可能使第三種操作取值範圍大,就要使前兩種操作用的操作小,當我列舉一個k時,第二種用的運算元固定,我要找到\(P\)所在的區間\([l,r]\)內二進位制數位上1最少的數,可以用簡單的數位dp實現

列舉k,根據\(P\)取值不同,我們可以得到最多\(61 * N\)個序列
只要求這些序列能減的最大值就行嗎,不是的,有些序列通過相減會重複,我們需要把差分相同的序列分到一起
然後做一下區間求並即可

程式碼

#include <bits/stdc++.h>
#define fi first
#define se second
#define pii pair<int,int>
#define pdi pair<db,int>
#define mp make_pair
#define pb push_back
#define enter putchar('\n')
#define space putchar(' ')
#define eps 1e-8
#define mo 974711
#define MAXN 200005
//#define ivorysi
using namespace std;
typedef long long int64;
typedef double db;
template<class T>
void read(T &res) {
    res = 0;char c = getchar();T f = 1;
    while(c < '0' || c > '9') {
    if(c == '-') f = -1;
    c = getchar();
    }
    while(c >= '0' && c <= '9') {
    res = res * 10 + c - '0';
    c = getchar();
    }
    res *= f;
}
template<class T>
void out(T x) {
    if(x < 0) {x = -x;putchar('-');}
    if(x >= 10) {
    out(x / 10);
    }
    putchar('0' + x % 10);
}
const int MOD = 1000000007;
int N,tot;
int64 K,a[205],rk[205];
vector<pair<int64,int64> > range;
int inc(int a,int b) {
    return a + b >= MOD ? a + b - MOD : a + b;
}
struct node {
    int64 c[205],u;
    friend bool operator == (const node &a,const node &b) {
    for(int i = 2 ; i <= N ; ++i) {
        if(a.c[i] != b.c[i]) return false;
    }
    return true;
    }
    friend bool operator < (const node &a,const node &b) {
    for(int i = 2 ; i <= N ; ++i) {
        if(a.c[i] != b.c[i]) return a.c[i] < b.c[i];
    }
    return false;
    }
    friend bool operator != (const node &a,const node &b) {
    return !(a == b);
    }
}seq[205 * 62];

int minpopcount(int64 l,int64 r) {
    int dp[2][5];
    int cur = 0;
    for(int i = 0 ; i <= 3 ; ++i) dp[cur][i] = 1000000;
    dp[cur][3] = 0;
    for(int i = 60 ; i >= 0 ; --i) {
    for(int j = 0 ; j <= 3 ; ++j) dp[cur ^ 1][j] = 100000;
    int x = (l >> i) & 1,y = (r >> i) & 1;
    for(int s = 0 ; s <= 3 ; ++s) {
        for(int k = 0 ; k <= 1 ; ++k) {
        int t = 0;
        if(s & 1) {
            if(k < x) continue;
            if(k == x) t |= 1;
        }
        if(s & 2) {
            if(k > y) continue;
            if(k == y) t |= 2;
        }
        dp[cur ^ 1][t] = min(dp[cur][s] + k,dp[cur ^ 1][t]);
        }
    }
    cur ^= 1;
    }
    int res = 100000;
    for(int i = 0 ; i <= 3 ; ++i) {
    res = min(res,dp[cur][i]);
    }
    return res;
}
void Insert(int64 l,int64 r,int k) {
    int64 rem = K - k - minpopcount(l,r);
    if(rem < 0) return;
    int64 t = 1;
    while(k--) t *= 2;
    ++tot;
    for(int i = 1 ; i <= N ; ++i) {
    seq[tot].c[i] = a[i] / t;
    if(a[i] % t < l)  {
        seq[tot].c[i] -= 1;
        if(seq[tot].c[i] < 0) {--tot;return;} 
    }
    rem = min(rem,seq[tot].c[i]);
    }
    seq[tot].u = rem;
    for(int i = N ; i >= 2 ; --i) {
    seq[tot].c[i] = seq[tot].c[i] - seq[tot].c[i - 1];
    }
}
void Solve() {
    read(N);read(K);
    int64 mv = 0;
    for(int i = 1 ; i <= N ; ++i) {read(a[i]);mv = max(mv,a[i]);}
    int up = 0;
    while(mv) {++up;mv >>= 1;}
    int64 t = 1;
    for(int i = 0 ; i <= up ; ++i) {
    for(int j = 1 ; j <= N ; ++j) {
        rk[j] = a[j] % t;
    }
    sort(rk + 1,rk + N + 1);
    rk[N + 1] = t - 1;
    Insert(0,rk[1],i);
    for(int j = 2 ; j <= N + 1 ; ++j) {
        if(rk[j] != rk[j - 1]) Insert(rk[j - 1] + 1,rk[j],i);
    }
    t *= 2;
    }
    sort(seq + 1,seq + tot + 1);
    range.pb(mp(seq[1].c[1] - seq[1].u,seq[1].c[1]));
    int ans = 0;
    for(int i = 2 ; i <= tot + 1; ++i) {
    if(i == tot + 1 || seq[i] != seq[i - 1]) {
        sort(range.begin(),range.end());
        int64 st = range[0].fi,ed = range[0].se;
        for(int k = 1 ; k < range.size() ; ++k) {
        if(range[k].fi > ed) {
            ans = inc(ans,(ed - st + 1) % MOD);
            st = range[k].fi;ed = range[k].se;
        }
        else ed = max(range[k].se,ed);
        }
        ans = inc(ans,(ed - st + 1) % MOD);
        range.clear();
    }
    range.pb(mp(seq[i].c[1] - seq[i].u,seq[i].c[1]));
    }
    out(ans);enter;
}
int main() {
#ifdef ivorysi
    freopen("f1.in","r",stdin);
#endif
    Solve();
    return 0;
}