python—networkx:求圖的平均路徑長度並畫出直方圖
阿新 • • 發佈:2018-12-26
#!/usr/bin/env python """ Compute some network properties for the lollipop graph. """ # Copyright (C) 2004 by # Aric Hagberg <[email protected]> # Dan Schult <[email protected]> # Pieter Swart <[email protected]> # All rights reserved. # BSD license. from networkx import * G = lollipop_graph(4,6) pathlengths=[] #單源最短路徑演算法求出節點v到圖G每個節點的最短路徑,存入pathlengths print("source vertex {target:length, }") for v in G.nodes(): spl=single_source_shortest_path_length(G,v) print('%s %s' % (v,spl)) for p in spl.values(): pathlengths.append(p) #取出每條路徑,計算平均值。 print('')print("average shortest path length %s" % (sum(pathlengths)/len(pathlengths))) #路徑長度直方圖,如果路徑不存在,設為1,如果已經存在過一次,則原先基礎上加1 # histogram of path lengths dist={} for p in pathlengths: if p in dist: dist[p]+=1 else: dist[p]=1 print('') print("length #paths") verts=dist.keys() for d in sorted(verts): print('%s %d' % (d,dist[d])) #內嵌函式求圖G的多個屬性 print("radius: %d" % radius(G)) print("diameter: %d" % diameter(G)) print("eccentricity: %s" % eccentricity(G)) print("center: %s" % center(G)) print("periphery: %s" % periphery(G)) print("density: %s" % density(G))