Top 3 Trends in Deep Learning
I remember the journey of creating my first deep learning network. It all started by typing that first search into Google to understand the technology: "What is deep learning?" After hours of deep learning trial and error, I was left with a painstaking discovery: this is going to take a lot of time. This is not another "what is deep learning?" I'm here to talk about the intermediate stage of deep learning, and the trends that are emerging in response to the challenges at this stage.
相關推薦
Top 3 Trends in Deep Learning
I remember the journey of creating my first deep learning network. It all started by typing that first search into Google to understand the technology: "Wh
Recent Trends in Deep Learning Based Natural Language Processing(arXiv)筆記
深度學習方法採用多個處理層來學習資料的層次表示,並在許多領域中產生了最先進的結果。最近,在自然語言處理(NLP)的背景下,各種模型設計和方法蓬勃發展。本文總結了已經用於大量NLP任務的重要深度學習相關模型和方法,及回顧其演變過程。我們還對各種模型進行了總結、比較
Transfer learning & The art of using Pre-trained Models in Deep Learning
tran topic led super entire pooling file under mina 原文網址: https://www.analyticsvidhya.com/blog/2017/06/transfer-learning-the-art-of-fine
【 李宏毅深度學習合輯 】Advanced Topics in Deep Learning - Imitation Learning
advance HA common exp img 技術分享 treat get som You have to force experts to treat some uncommon and extreme situations.
論文閱讀之獻給新手的深度學習綜述——Recent Advances in Deep Learning: An Overview
這篇綜述論文列舉出了近年來深度學習的重要研究成果,從方法、架構,以及正則化、優化技術方面進行概述。本人認為,這篇綜述對於剛入門的深度學習新手是一份不錯的參考資料,在形成基本學術界圖景、指導文獻查詢等方面都能提供幫助。 論文地址:https://arxiv.org/pdf/1807.08169v1
[work] On Optimization in Deep Learning
There are at least exponentially many global minima for a neural net. Since permuating the nodes in one layer does not change the loss.
What’s New in Deep Learning Research: How Google Uses Reinforcement Learning to Ask All the Right…
What’s New in Deep Learning Research: How Google Uses Reinforcement Learning to Ask All the Right QuestionsThe ability of formulate questions is a fundamen
Human Inspired Memory Patterns in Deep Learning
Human Inspired Memory Patterns in Deep LearningThe initial excitement of the promise of solving intelligence via brute force gradient descent (i.e. Deep Le
1.3.2【Deep Learning翻譯系列】Activation Functions 啟用函式
1、Sigmoid與雙曲正切 當建立神經網路,要做出的選擇之一是在隱藏層、輸出單元使用什麼啟用函式。 常見如的Sigmoid函式: σ
1.3.1 【Deep Learning翻譯系列】Neural Network Overview神經網路概覽
上圖是一個神經網路。神經網路中每個的節點對應於的兩個步驟: 首先計算 z = w
深度學習中的池化詳解 | Pooling in Deep learning
本文由多篇部落格總結整理而成,參考部落格見文末,侵刪。 目錄 最大池化 : 平均池化 重疊池化 參考文獻 參考部落格 首先,什麼是CNN ------------------------------------
Things that Aren't Working in Deep Learning
Summary: This may be the golden age of deep learning but a lot can be learned by looking at where deep neural nets aren't working yet. This can be a guide
[3 Jun 2015 ~ 9 Jun 2015] Deep Learning in arxiv
with center spa multi only vol them res multipl arXiv is an e-print service in the fields of physics, mathematics, computer science, qu
Beyond the Hype: AI, ML, and Deep Learning in Cybersecurity (Part 3)
This is the final piece of my three-part blog on the topic human intelligence vs. AI, and how AI is being used successfully to address various problems in
[譯]深度神經網絡的多任務學習概覽(An Overview of Multi-task Learning in Deep Neural Networks)
noi 使用方式 stats 基於 共享 process machines 嬰兒 sdro 譯自:http://sebastianruder.com/multi-task/ 1. 前言 在機器學習中,我們通常關心優化某一特定指標,不管這個指標是一個標準值,還是企業KPI。為
Coursera 深度學習 吳恩達 deep learning.ai 筆記整理(3-2)——機器學習策略
新的 bsp 誤差 spa 歸納 空間 font 處理 整理 一、誤差分析 定義:有時我們希望算法能夠勝任人類能做的任務,但是當算法還沒達到人類所預期的性能時,人工檢查算法錯誤會讓你知道接下來做什麽,這也就是誤差分析 檢查,發現會把夠狗當恒,是否需要做一個項目專門處理狗
Coursera Deep Learning 3 Convolutional Neural Networks - week1
pos com class deep inf vertical cti vertica 圖片 CNN 主要解決 computer vision 問題,同時解決input X 維度太大的問題. Edge detection exampl
吳恩達deep learning課程作業:Class 4 Week 3 Car detection
作業題是基於YOLO框架做的一個簡單的車輛檢測網路。從課程的學習和練習可以讓我們基本掌握YOLO框架的思路和程式碼的大致編碼,想遷移YOLO框架做自己目標檢測任務的同學可以嘗試自己寫一下作業。在這裡記錄一下練習的作業吧。 1、下載作業題,並將h5檔案放置到到model_data中。h5檔案是包含
深度神經網路的多工學習概覽(An Overview of Multi-task Learning in Deep Neural Networks)
譯自:http://sebastianruder.com/multi-task/ 1. 前言 在機器學習中,我們通常關心優化某一特定指標,不管這個指標是一個標準值,還是企業KPI。為了達到這個目標,我們訓練單一模型或多個模型集合來完成指定得任務。然後,我們通過精細調參,來改進模型直至效能不再
Application of deep learning in Industrial area
Application of deep learning in Industrial area https://www.vision-systems.com/articles/print/volume-22/issue-10/departments/technology-trends/machi