1. 程式人生 > >吳恩達deep learning課程作業:Class 4 Week 3 Car detection

吳恩達deep learning課程作業:Class 4 Week 3 Car detection

作業題是基於YOLO框架做的一個簡單的車輛檢測網路。從課程的學習和練習可以讓我們基本掌握YOLO框架的思路和程式碼的大致編碼,想遷移YOLO框架做自己目標檢測任務的同學可以嘗試自己寫一下作業。在這裡記錄一下練習的作業吧。

1、下載作業題,並將h5檔案放置到到model_data中。h5檔案是包含YOLO網路的預訓練權重等資訊。我們有兩種方式得到h5檔案,第一種下面的下載連結。第二種在github上給出了一些步驟:(連結:https://github.com/allanzelener/YAD2K) 

h5檔案下載:https://pan.baidu.com/s/1XVjis4gAW1OC_2SHZprZLw

2.下載作業題,下載連結如下:

https://pan.baidu.com/s/1Yf-ju1n8aEo-WIrQta2dIA 

下載好解壓後,使用Spyder建立一個工程,和上圖一樣。上圖比作業題多了一個yolo.py檔案,這個是我們自己需要程式設計的檢測檔案。一開始自己寫的時候各種報錯,然後參考課程給出的參考實驗指導(其實就是答案)完成的。參考指導從下面連結下載,

https://pan.baidu.com/s/1ztI80l8RAaGx3d2mp6RmwQ

複製和修改裡面的程式碼就行了。不過有一行是多餘的,直接“#”掉就好。然後跑了一會會,得到下圖。

下面把能跑通的yolo.py檔案程式碼貼出來吧。練習題很棒,我們可以在掌握基本框架的基礎上做一些自己想做的事情,比如檢測我們自己的任務,可以嘗試對YOLO做一些簡化,使得速度更快,當然在檢測任務簡單的情況下。除此之外,也可以嘗試自己構建預權重網路訓練並儲存權重用於檢測任務等等。

import argparse
import os
import matplotlib.pyplot as plt
from matplotlib.pyplot import imshow
import scipy.io
import scipy.misc
import numpy as np
import pandas as pd
import PIL
import tensorflow as tf
from keras import backend as K
from keras.layers import Input, Lambda, Conv2D
from keras.models import load_model, Model
from yolo_utils import read_classes, read_anchors, generate_colors, preprocess_image, draw_boxes, scale_boxes
from yad2k.models.keras_yolo import yolo_head, yolo_boxes_to_corners, preprocess_true_boxes, yolo_loss, yolo_body

a = np.random.randn(19*19, 5, 1)
b = np.random.randn(19*19, 5, 80)
c = a * b # shape of c will be (19*19, 5, 80)

# GRADED FUNCTION: yolo_filter_boxes

def yolo_filter_boxes(box_confidence, boxes, box_class_probs, threshold = .6):
    """Filters YOLO boxes by thresholding on object and class confidence.

    Arguments:
    box_confidence -- tensor of shape (19, 19, 5, 1)
    boxes -- tensor of shape (19, 19, 5, 4)
    box_class_probs -- tensor of shape (19, 19, 5, 80)
    threshold -- real value, if [ highest class probability score < threshold], then get rid of the corresponding box

    Returns:
    scores -- tensor of shape (None,), containing the class probability score for selected boxes
    boxes -- tensor of shape (None, 4), containing (b_x, b_y, b_h, b_w) coordinates of selected boxes
    classes -- tensor of shape (None,), containing the index of the class detected by the selected boxes

    Note: "None" is here because you don't know the exact number of selected boxes, as it depends on the threshold. 
    For example, the actual output size of scores would be (10,) if there are 10 boxes.
    """

    # Step 1: Compute box scores
    ### START CODE HERE ### (≈ 1 line)
    box_scores = box_confidence * box_class_probs
    ### END CODE HERE ###

    # Step 2: Find the box_classes thanks to the max box_scores, keep track of the corresponding score
    ### START CODE HERE ### (≈ 2 lines)
    box_classes = K.argmax(box_scores, axis=-1)
    box_class_scores = K.max(box_scores, axis=-1, keepdims=False)
#     print(box_classes.shape)
#     print(box_class_scores.shape)
    ### END CODE HERE ###

    # Step 3: Create a filtering mask based on "box_class_scores" by using "threshold". The mask should have the
    # same dimension as box_class_scores, and be True for the boxes you want to keep (with probability >= threshold)
    ### START CODE HERE ### (≈ 1 line)
    filtering_mask = box_class_scores >= threshold
    ### END CODE HERE ###

    # Step 4: Apply the mask to scores, boxes and classes
    ### START CODE HERE ### (≈ 3 lines)
#     print(box_class_scores.shape)
#     print(filtering_mask.shape)
    scores = tf.boolean_mask(box_class_scores, filtering_mask)
    boxes = tf.boolean_mask(boxes, filtering_mask)
    classes = tf.boolean_mask(box_classes, filtering_mask)
    ### END CODE HERE ###

    return scores, boxes, classes

# GRADED FUNCTION: iou

def iou(box1, box2):
    """Implement the intersection over union (IoU) between box1 and box2

    Arguments:
    box1 -- first box, list object with coordinates (x1, y1, x2, y2)
    box2 -- second box, list object with coordinates (x1, y1, x2, y2)
    """

    # Calculate the (y1, x1, y2, x2) coordinates of the intersection of box1 and box2. Calculate its Area.
    ### START CODE HERE ### (≈ 5 lines)
    xi1 = max(box1[0], box2[0])
    yi1 = max(box1[1], box2[1])
    xi2 = min(box1[2], box2[2])
    yi2 = min(box1[3], box2[3])
    inter_area = (xi2 - xi1) * (yi2 - yi1)
#     print(xi1, yi1, xi2, yi2)
#     print(inter_area)
    ### END CODE HERE ###    

    # Calculate the Union area by using Formula: Union(A,B) = A + B - Inter(A,B)
    ### START CODE HERE ### (≈ 3 lines)
    box1_area = (box1[2] - box1[0]) * (box1[3] - box1[1])
    box2_area = (box2[2] - box2[0]) * (box2[3] - box2[1])
    union_area = box1_area + box2_area - inter_area
#     print(union_area)
    ### END CODE HERE ###

    # compute the IoU
    ### START CODE HERE ### (≈ 1 line)
    iou = float(inter_area) / float(union_area)
    ### END CODE HERE ###

    return iou

# GRADED FUNCTION: yolo_non_max_suppression

def yolo_non_max_suppression(scores, boxes, classes, max_boxes = 10, iou_threshold = 0.5):
    """
    Applies Non-max suppression (NMS) to set of boxes

    Arguments:
    scores -- tensor of shape (None,), output of yolo_filter_boxes()
    boxes -- tensor of shape (None, 4), output of yolo_filter_boxes() that have been scaled to the image size (see later)
    classes -- tensor of shape (None,), output of yolo_filter_boxes()
    max_boxes -- integer, maximum number of predicted boxes you'd like
    iou_threshold -- real value, "intersection over union" threshold used for NMS filtering

    Returns:
    scores -- tensor of shape (, None), predicted score for each box
    boxes -- tensor of shape (4, None), predicted box coordinates
    classes -- tensor of shape (, None), predicted class for each box

    Note: The "None" dimension of the output tensors has obviously to be less than max_boxes. Note also that this
    function will transpose the shapes of scores, boxes, classes. This is made for convenience.
    """

    max_boxes_tensor = K.variable(max_boxes, dtype='int32')     # tensor to be used in tf.image.non_max_suppression()
    K.get_session().run(tf.variables_initializer([max_boxes_tensor])) # initialize variable max_boxes_tensor

    # Use tf.image.non_max_suppression() to get the list of indices corresponding to boxes you keep
    ### START CODE HERE ### (≈ 1 line)
    nms_indices = tf.image.non_max_suppression(boxes, scores, max_boxes, iou_threshold)
    ### END CODE HERE ###

    # Use K.gather() to select only nms_indices from scores, boxes and classes
    ### START CODE HERE ### (≈ 3 lines)
    scores = K.gather(scores, nms_indices)
    boxes = K.gather(boxes, nms_indices)
    classes = K.gather(classes, nms_indices)
    ### END CODE HERE ###

    return scores, boxes, classes

# GRADED FUNCTION: yolo_eval

def yolo_eval(yolo_outputs, image_shape = (720., 1280.), max_boxes=10, score_threshold=.6, iou_threshold=.5):
    """
    Converts the output of YOLO encoding (a lot of boxes) to your predicted boxes along with their scores, box coordinates and classes.

    Arguments:
    yolo_outputs -- output of the encoding model (for image_shape of (608, 608, 3)), contains 4 tensors:
                    box_confidence: tensor of shape (None, 19, 19, 5, 1)
                    box_xy: tensor of shape (None, 19, 19, 5, 2)
                    box_wh: tensor of shape (None, 19, 19, 5, 2)
                    box_class_probs: tensor of shape (None, 19, 19, 5, 80)
    image_shape -- tensor of shape (2,) containing the input shape, in this notebook we use (608., 608.) (has to be float32 dtype)
    max_boxes -- integer, maximum number of predicted boxes you'd like
    score_threshold -- real value, if [ highest class probability score < threshold], then get rid of the corresponding box
    iou_threshold -- real value, "intersection over union" threshold used for NMS filtering

    Returns:
    scores -- tensor of shape (None, ), predicted score for each box
    boxes -- tensor of shape (None, 4), predicted box coordinates
    classes -- tensor of shape (None,), predicted class for each box
    """

    ### START CODE HERE ### 

    # Retrieve outputs of the YOLO model (≈1 line)
    box_confidence, box_xy, box_wh, box_class_probs = yolo_outputs

    # Convert boxes to be ready for filtering functions 
    boxes = yolo_boxes_to_corners(box_xy, box_wh)

    # Use one of the functions you've implemented to perform Score-filtering with a threshold of score_threshold (≈1 line)
    scores, boxes, classes = yolo_filter_boxes(box_confidence, boxes, box_class_probs, threshold = .6)

    # Scale boxes back to original image shape.
    boxes = scale_boxes(boxes, image_shape)

    # Use one of the functions you've implemented to perform Non-max suppression with a threshold of iou_threshold (≈1 line)
    scores, boxes, classes = yolo_non_max_suppression(scores, boxes, classes, max_boxes = 10, iou_threshold = 0.5)

    ### END CODE HERE ###

    return scores, boxes, classes

sess = K.get_session()

class_names = read_classes("model_data/coco_classes.txt")
anchors = read_anchors("model_data/yolo_anchors.txt")
image_shape = (720., 1280.) 
yolo_model = load_model("model_data/yolo.h5")

yolo_model.summary()


yolo_outputs = yolo_head(yolo_model.output, anchors, len(class_names))
scores, boxes, classes = yolo_eval(yolo_outputs, image_shape)
#image, image_data = preprocess_image("images/" + image_file, model_image_size = (608, 608))


def predict(sess, image_file):
    """
    Runs the graph stored in "sess" to predict boxes for "image_file". Prints and plots the preditions.

    Arguments:
    sess -- your tensorflow/Keras session containing the YOLO graph
    image_file -- name of an image stored in the "images" folder.

    Returns:
    out_scores -- tensor of shape (None, ), scores of the predicted boxes
    out_boxes -- tensor of shape (None, 4), coordinates of the predicted boxes
    out_classes -- tensor of shape (None, ), class index of the predicted boxes

    Note: "None" actually represents the number of predicted boxes, it varies between 0 and max_boxes. 
    """

    # Preprocess your image
    image, image_data = preprocess_image("images/" + image_file, model_image_size = (608, 608))

    # Run the session with the correct tensors and choose the correct placeholders in the feed_dict.
    # You'll need to use feed_dict={yolo_model.input: ... , K.learning_phase(): 0})
    ### START CODE HERE ### (≈ 1 line)
    out_scores, out_boxes, out_classes = sess.run([scores, boxes, classes], feed_dict={yolo_model.input:image_data, K.learning_phase():0})
    ### END CODE HERE ###

    # Print predictions info
    print('Found {} boxes for {}'.format(len(out_boxes), image_file))
    # Generate colors for drawing bounding boxes.
    colors = generate_colors(class_names)
    # Draw bounding boxes on the image file
    draw_boxes(image, out_scores, out_boxes, out_classes, class_names, colors)
    # Save the predicted bounding box on the image
    image.save(os.path.join("out", image_file), quality=90)
    # Display the results in the notebook
    output_image = scipy.misc.imread(os.path.join("out", image_file))
    imshow(output_image)

    return out_scores, out_boxes, out_classes

out_scores, out_boxes, out_classes = predict(sess, "test.jpg")