ARM Linux 3.x的裝置樹(Device Tree)
本文部分案例和文字英文原版來源於 http://devicetree.org/Device_Tree_Usage
1. ARM Device Tree起源
Linus Torvalds在2011年3月17日的ARM Linux郵件列表宣稱“this whole ARM thing is a f*cking pain in the ass”,引發ARM Linux社群的地震,隨後ARM社群進行了一系列的重大修正。在過去的ARM Linux中,arch/arm/plat-xxx和arch/arm/mach-xxx中充斥著大量的垃圾程式碼,相當多數的程式碼只是在描述板級細節,而這些板級細節對於核心來講,不過是垃圾,如板上的platform裝置、resource、i2c_board_info、spi_board_info以及各種硬體的platform_data。讀者有興趣可以統計下常見的s3c2410、s3c6410等板級目錄,程式碼量在數萬行。社群必須改變這種局面,於是PowerPC等其他體系架構下已經使用的Flattened Device Tree(FDT)進入ARM社群的視野。Device Tree是一種描述硬體的資料結構,它起源於 OpenFirmware (OF)。在Linux 2.6中,ARM架構的板極硬體細節過多地被硬編碼在arch/arm/plat-xxx和arch/arm/mach-xxx,採用Device Tree後,許多硬體的細節可以直接透過它傳遞給Linux,而不再需要在kernel中進行大量的冗餘編碼。
Device Tree由一系列被命名的結點(node)和屬性(property)組成,而結點本身可包含子結點。所謂屬性,其實就是成對出現的name和value。在Device Tree中,可描述的資訊包括(原先這些資訊大多被hard code到kernel中):
- CPU的數量和類別
- 記憶體基地址和大小
- 匯流排和橋
- 外設連線
- 中斷控制器和中斷使用情況
- GPIO控制器和GPIO使用情況
- Clock控制器和Clock使用情況
2. Device Tree組成和結構
整個Device Tree牽涉面比較廣,即增加了新的用於描述裝置硬體資訊的文字格式,又增加了編譯這一文字的工具,同時Bootloader也需要支援將編譯後的Device Tree傳遞給Linux核心。DTS (device tree source)
/include/ "vexpress-v2m.dtsi"
當然,和C語言的標頭檔案類似,.dtsi也可以include其他的.dtsi,譬如幾乎所有的ARM SoC的.dtsi都引用了skeleton.dtsi。
.dts(或者其include的.dtsi)基本元素即為前文所述的結點和屬性:
上述.dts檔案並沒有什麼真實的用途,但它基本表徵了一個Device Tree原始檔的結構:/ { node1 { a-string-property = "A string"; a-string-list-property = "first string", "second string"; a-byte-data-property = [0x01 0x23 0x34 0x56]; child-node1 { first-child-property; second-child-property = <1>; a-string-property = "Hello, world"; }; child-node2 { }; }; node2 { an-empty-property; a-cell-property = <1 2 3 4>; /* each number (cell) is a uint32 */ child-node1 { }; }; };
1個root結點"/";
root結點下面含一系列子結點,本例中為"node1" 和 "node2";
結點"node1"下又含有一系列子結點,本例中為"child-node1" 和 "child-node2";
各結點都有一系列屬性。這些屬性可能為空,如" an-empty-property";可能為字串,如"a-string-property";可能為字串陣列,如"a-string-list-property";可能為Cells(由u32整陣列成),如"second-child-property",可能為二進位制數,如"a-byte-data-property"。
下面以一個最簡單的machine為例來看如何寫一個.dts檔案。假設此machine的配置如下:
1個雙核ARM Cortex-A9 32位處理器;
ARM的local bus上的記憶體對映區域分佈了2個串列埠(分別位於0x101F1000 和 0x101F2000)、GPIO控制器(位於0x101F3000)、SPI控制器(位於0x10170000)、中斷控制器(位於0x10140000)和一個external bus橋;
External bus橋上又連線了SMC SMC91111 Ethernet(位於0x10100000)、I2C控制器(位於0x10160000)、64MB NOR Flash(位於0x30000000);
External bus橋上連線的I2C控制器所對應的I2C總線上又連線了Maxim DS1338實時鐘(I2C地址為0x58)。
其對應的.dts檔案為:
/ {
compatible = "acme,coyotes-revenge";
#address-cells = <1>;
#size-cells = <1>;
interrupt-parent = <&intc>;
cpus {
#address-cells = <1>;
#size-cells = <0>;
[email protected] {
compatible = "arm,cortex-a9";
reg = <0>;
};
[email protected] {
compatible = "arm,cortex-a9";
reg = <1>;
};
};
[email protected] {
compatible = "arm,pl011";
reg = <0x101f0000 0x1000 >;
interrupts = < 1 0 >;
};
[email protected] {
compatible = "arm,pl011";
reg = <0x101f2000 0x1000 >;
interrupts = < 2 0 >;
};
[email protected] {
compatible = "arm,pl061";
reg = <0x101f3000 0x1000
0x101f4000 0x0010>;
interrupts = < 3 0 >;
};
intc: [email protected] {
compatible = "arm,pl190";
reg = <0x10140000 0x1000 >;
interrupt-controller;
#interrupt-cells = <2>;
};
[email protected] {
compatible = "arm,pl022";
reg = <0x10115000 0x1000 >;
interrupts = < 4 0 >;
};
external-bus {
#address-cells = <2>
#size-cells = <1>;
ranges = <0 0 0x10100000 0x10000 // Chipselect 1, Ethernet
1 0 0x10160000 0x10000 // Chipselect 2, i2c controller
2 0 0x30000000 0x1000000>; // Chipselect 3, NOR Flash
[email protected],0 {
compatible = "smc,smc91c111";
reg = <0 0 0x1000>;
interrupts = < 5 2 >;
};
[email protected],0 {
compatible = "acme,a1234-i2c-bus";
#address-cells = <1>;
#size-cells = <0>;
reg = <1 0 0x1000>;
interrupts = < 6 2 >;
[email protected] {
compatible = "maxim,ds1338";
reg = <58>;
interrupts = < 7 3 >;
};
};
[email protected],0 {
compatible = "samsung,k8f1315ebm", "cfi-flash";
reg = <2 0 0x4000000>;
};
};
};
上述.dts檔案中,root結點"/"的compatible 屬性compatible = "acme,coyotes-revenge";定義了系統的名稱,它的組織形式為:<manufacturer>,<model>。Linux核心透過root結點"/"的compatible 屬性即可判斷它啟動的是什麼machine。在.dts檔案的每個裝置,都有一個compatible 屬性,compatible屬性使用者驅動和裝置的繫結。compatible 屬性是一個字串的列表,列表中的第一個字串表徵了結點代表的確切裝置,形式為"<manufacturer>,<model>",其後的字串表徵可相容的其他裝置。可以說前面的是特指,後面的則涵蓋更廣的範圍。如在arch/arm/boot/dts/vexpress-v2m.dtsi中的Flash結點:
[email protected],00000000 {
compatible = "arm,vexpress-flash", "cfi-flash";
reg = <0 0x00000000 0x04000000>,
<1 0x00000000 0x04000000>;
bank-width = <4>;
};
compatible屬性的第2個字串"cfi-flash"明顯比第1個字串"arm,vexpress-flash"涵蓋的範圍更廣。再比如,Freescale MPC8349 SoC含一個串列埠裝置,它實現了國家半導體(National Semiconductor)的ns16550 暫存器介面。則MPC8349串列埠裝置的compatible屬性為compatible = "fsl,mpc8349-uart", "ns16550"。其中,fsl,mpc8349-uart指代了確切的裝置, ns16550代表該裝置與National Semiconductor 的16550 UART保持了暫存器相容。
接下來root結點"/"的cpus子結點下面又包含2個cpu子結點,描述了此machine上的2個CPU,並且二者的compatible 屬性為"arm,cortex-a9"。
注意cpus和cpus的2個cpu子結點的命名,它們遵循的組織形式為:<name>[@<unit-address>],<>中的內容是必選項,[]中的則為可選項。name是一個ASCII字串,用於描述結點對應的裝置型別,如3com Ethernet介面卡對應的結點name宜為ethernet,而不是3com509。如果一個結點描述的裝置有地址,則應該給出@unit-address。多個相同型別裝置結點的name可以一樣,只要unit-address不同即可,如本例中含有[email protected]、[email protected]以及[email protected]與[email protected]這樣的同名結點。裝置的unit-address地址也經常在其對應結點的reg屬性中給出。ePAPR標準給出了結點命名的規範。
可定址的裝置使用如下資訊來在Device Tree中編碼地址資訊:
- reg
- #address-cells
- #size-cells
root結點的子結點描述的是CPU的檢視,因此root子結點的address區域就直接位於CPU的memory區域。但是,經過匯流排橋後的address往往需要經過轉換才能對應的CPU的memory對映。external-bus的ranges屬性定義了經過external-bus橋後的地址範圍如何對映到CPU的memory區域。
ranges = <0 0 0x10100000 0x10000 // Chipselect 1, Ethernet
1 0 0x10160000 0x10000 // Chipselect 2, i2c controller
2 0 0x30000000 0x1000000>; // Chipselect 3, NOR Flash
ranges是地址轉換表,其中的每個專案是一個子地址、父地址以及在子地址空間的大小的對映。對映表中的子地址、父地址分別採用子地址空間的#address-cells和父地址空間的#address-cells大小。對於本例而言,子地址空間的#address-cells為2,父地址空間的#address-cells值為1,因此0 0 0x10100000 0x10000的前2個cell為external-bus後片選0上偏移0,第3個cell表示external-bus後片選0上偏移0的地址空間被對映到CPU的0x10100000位置,第4個cell表示對映的大小為0x10000。ranges的後面2個專案的含義可以類推。Device Tree中還可以中斷連線資訊,對於中斷控制器而言,它提供如下屬性:
interrupt-controller – 這個屬性為空,中斷控制器應該加上此屬性表明自己的身份;
#interrupt-cells – 與#address-cells 和 #size-cells相似,它表明連線此中斷控制器的裝置的interrupts屬性的cell大小。
在整個Device Tree中,與中斷相關的屬性還包括:
interrupt-parent – 裝置結點透過它來指定它所依附的中斷控制器的phandle,當結點沒有指定interrupt-parent 時,則從父級結點繼承。對於本例而言,root結點指定了interrupt-parent = <&intc>;其對應於intc: [email protected],而root結點的子結點並未指定interrupt-parent,因此它們都繼承了intc,即位於0x10140000的中斷控制器。
interrupts – 用到了中斷的裝置結點透過它指定中斷號、觸發方法等,具體這個屬性含有多少個cell,由它依附的中斷控制器結點的#interrupt-cells屬性決定。而具體每個cell又是什麼含義,一般由驅動的實現決定,而且也會在Device Tree的binding文件中說明。譬如,對於ARM GIC中斷控制器而言,#interrupt-cells為3,它3個cell的具體含義Documentation/devicetree/bindings/arm/gic.txt就有如下文字說明:
01 The 1st cell is the interrupt type; 0 for SPI interrupts, 1 for PPI
02 interrupts.
03
04 The 2nd cell contains the interrupt number for the interrupt type.
05 SPI interrupts are in the range [0-987]. PPI interrupts are in the
06 range [0-15].
07
08 The 3rd cell is the flags, encoded as follows:
09 bits[3:0] trigger type and level flags.
10 1 = low-to-high edge triggered
11 2 = high-to-low edge triggered
12 4 = active high level-sensitive
13 8 = active low level-sensitive
14 bits[15:8] PPI interrupt cpu mask. Each bit corresponds to each of
15 the 8 possible cpus attached to the GIC. A bit set to '1' indicated
16 the interrupt is wired to that CPU. Only valid for PPI interrupts.
另外,值得注意的是,一個裝置還可能用到多箇中斷號。對於ARM GIC而言,若某裝置使用了SPI的168、169號2箇中斷,而言都是高電平觸發,則該裝置結點的interrupts屬性可定義為:interrupts = <0 168 4>, <0 169 4>;除了中斷以外,在ARM Linux中clock、GPIO、pinmux都可以透過.dts中的結點和屬性進行描述。
DTC (device tree compiler)
將.dts編譯為.dtb的工具。DTC的原始碼位於核心的scripts/dtc目錄,在Linux核心使能了Device Tree的情況下,編譯核心的時候主機工具dtc會被編譯出來,對應scripts/dtc/Makefile中的“hostprogs-y := dtc”這一hostprogs編譯target。在Linux核心的arch/arm/boot/dts/Makefile中,描述了當某種SoC被選中後,哪些.dtb檔案會被編譯出來,如與VEXPRESS對應的.dtb包括:
dtb-$(CONFIG_ARCH_VEXPRESS) += vexpress-v2p-ca5s.dtb \
vexpress-v2p-ca9.dtb \
vexpress-v2p-ca15-tc1.dtb \
vexpress-v2p-ca15_a7.dtb \
xenvm-4.2.dtb
在Linux下,我們可以單獨編譯Device Tree檔案。當我們在Linux核心下執行make dtbs時,若我們之前選擇了ARCH_VEXPRESS,上述.dtb都會由對應的.dts編譯出來。因為arch/arm/Makefile中含有一個dtbs編譯target專案。Device Tree Blob (.dtb)
.dtb是.dts被DTC編譯後的二進位制格式的Device Tree描述,可由Linux核心解析。通常在我們為電路板製作NAND、SD啟動image時,會為.dtb檔案單獨留下一個很小的區域以存放之,之後bootloader在引導kernel的過程中,會先讀取該.dtb到記憶體。Binding
對於Device Tree中的結點和屬性具體是如何來描述裝置的硬體細節的,一般需要文件來進行講解,文件的字尾名一般為.txt。這些文件位於核心的Documentation/devicetree/bindings目錄,其下又分為很多子目錄。Bootloader
Uboot mainline 從 v1.1.3開始支援Device Tree,其對ARM的支援則是和ARM核心支援Device Tree同期完成。為了使能Device Tree,需要編譯Uboot的時候在config檔案中加入
#define CONFIG_OF_LIBFDT
在Uboot中,可以從NAND、SD或者TFTP等任意介質將.dtb讀入記憶體,假設.dtb放入的記憶體地址為0x71000000,之後可在Uboot執行命令fdt addr命令設定.dtb的地址,如:
U-Boot> fdt addr 0x71000000
fdt的其他命令就變地可以使用,如fdt resize、fdt print等。
對於ARM來講,可以透過bootz kernel_addr initrd_address dtb_address的命令來啟動核心,即dtb_address作為bootz或者bootm的最後一次引數,第一個引數為核心映像的地址,第二個引數為initrd的地址,若不存在initrd,可以用 -代替。
3. Device Tree引發的BSP和驅動變更
有了Device Tree後,大量的板級資訊都不再需要,譬如過去經常在arch/arm/plat-xxx和arch/arm/mach-xxx實施的如下事情:1. 註冊platform_device,繫結resource,即記憶體、IRQ等板級資訊。
透過Device Tree後,形如
90 static struct resource xxx_resources[] = {
91 [0] = {
92 .start = …,
93 .end = …,
94 .flags = IORESOURCE_MEM,
95 },
96 [1] = {
97 .start = …,
98 .end = …,
99 .flags = IORESOURCE_IRQ,
100 },
101 };
102
103 static struct platform_device xxx_device = {
104 .name = "xxx",
105 .id = -1,
106 .dev = {
107 .platform_data = &xxx_data,
108 },
109 .resource = xxx_resources,
110 .num_resources = ARRAY_SIZE(xxx_resources),
111 };
之類的platform_device程式碼都不再需要,其中platform_device會由kernel自動展開。而這些resource實際來源於.dts中裝置結點的reg、interrupts屬性。典型地,大多數匯流排都與“simple_bus”相容,而在SoC對應的machine的.init_machine成員函式中,呼叫of_platform_bus_probe(NULL, xxx_of_bus_ids, NULL);即可自動展開所有的platform_device。譬如,假設我們有個XXX SoC,則可在arch/arm/mach-xxx/的板檔案中透過如下方式展開.dts中的裝置結點對應的platform_device:18 static struct of_device_id xxx_of_bus_ids[] __initdata = {
19 { .compatible = "simple-bus", },
20 {},
21 };
22
23 void __init xxx_mach_init(void)
24 {
25 of_platform_bus_probe(NULL, xxx_of_bus_ids, NULL);
26 }
32
33 #ifdef CONFIG_ARCH_XXX
38
39 DT_MACHINE_START(XXX_DT, "Generic XXX (Flattened Device Tree)")
41 …
45 .init_machine = xxx_mach_init,
46 …
49 MACHINE_END
50 #endif
2. 註冊i2c_board_info,指定IRQ等板級資訊。
形如
145 static struct i2c_board_info __initdata afeb9260_i2c_devices[] = {
146 {
147 I2C_BOARD_INFO("tlv320aic23", 0x1a),
148 }, {
149 I2C_BOARD_INFO("fm3130", 0x68),
150 }, {
151 I2C_BOARD_INFO("24c64", 0x50),
152 },
153 };
之類的i2c_board_info程式碼,目前不再需要出現,現在只需要把tlv320aic23、fm3130、24c64這些裝置結點填充作為相應的I2C controller結點的子結點即可,類似於前面的 [email protected],0 {
compatible = "acme,a1234-i2c-bus";
…
[email protected] {
compatible = "maxim,ds1338";
reg = <58>;
interrupts = < 7 3 >;
};
};
Device Tree中的I2C client會透過I2C host驅動的probe()函式中呼叫of_i2c_register_devices(&i2c_dev->adapter);被自動展開。3. 註冊spi_board_info,指定IRQ等板級資訊。
形如
79 static struct spi_board_info afeb9260_spi_devices[] = {
80 { /* DataFlash chip */
81 .modalias = "mtd_dataflash",
82 .chip_select = 1,
83 .max_speed_hz = 15 * 1000 * 1000,
84 .bus_num = 0,
85 },
86 };
之類的spi_board_info程式碼,目前不再需要出現,與I2C類似,現在只需要把mtd_dataflash之類的結點,作為SPI控制器的子結點即可,SPI host驅動的probe函式透過spi_register_master()註冊master的時候,會自動展開依附於它的slave。4. 多個針對不同電路板的machine,以及相關的callback。
過去,ARM Linux針對不同的電路板會建立由MACHINE_START和MACHINE_END包圍起來的針對這個machine的一系列callback,譬如:
373 MACHINE_START(VEXPRESS, "ARM-Versatile Express")
374 .atag_offset = 0x100,
375 .smp = smp_ops(vexpress_smp_ops),
376 .map_io = v2m_map_io,
377 .init_early = v2m_init_early,
378 .init_irq = v2m_init_irq,
379 .timer = &v2m_timer,
380 .handle_irq = gic_handle_irq,
381 .init_machine = v2m_init,
382 .restart = vexpress_restart,
383 MACHINE_END
這些不同的machine會有不同的MACHINE ID,Uboot在啟動Linux核心時會將MACHINE ID存放在r1暫存器,Linux啟動時會匹配Bootloader傳遞的MACHINE ID和MACHINE_START宣告的MACHINE ID,然後執行相應machine的一系列初始化函式。引入Device Tree之後,MACHINE_START變更為DT_MACHINE_START,其中含有一個.dt_compat成員,用於表明相關的machine與.dts中root結點的compatible屬性相容關係。如果Bootloader傳遞給核心的Device Tree中root結點的compatible屬性出現在某machine的.dt_compat表中,相關的machine就與對應的Device Tree匹配,從而引發這一machine的一系列初始化函式被執行。
489 static const char * const v2m_dt_match[] __initconst = {
490 "arm,vexpress",
491 "xen,xenvm",
492 NULL,
493 };
495 DT_MACHINE_START(VEXPRESS_DT, "ARM-Versatile Express")
496 .dt_compat = v2m_dt_match,
497 .smp = smp_ops(vexpress_smp_ops),
498 .map_io = v2m_dt_map_io,
499 .init_early = v2m_dt_init_early,
500 .init_irq = v2m_dt_init_irq,
501 .timer = &v2m_dt_timer,
502 .init_machine = v2m_dt_init,
503 .handle_irq = gic_handle_irq,
504 .restart = vexpress_restart,
505 MACHINE_END
Linux倡導針對多個SoC、多個電路板的通用DT machine,即一個DT machine的.dt_compat表含多個電路板.dts檔案的root結點compatible屬性字串。之後,如果的電路板的初始化序列不一樣,可以透過int of_machine_is_compatible(const char *compat) API判斷具體的電路板是什麼。譬如arch/arm/mach-exynos/mach-exynos5-dt.c的EXYNOS5_DT machine同時相容"samsung,exynos5250"和"samsung,exynos5440":
158 static char const *exynos5_dt_compat[] __initdata = {
159 "samsung,exynos5250",
160 "samsung,exynos5440",
161 NULL
162 };
163
177 DT_MACHINE_START(EXYNOS5_DT, "SAMSUNG EXYNOS5 (Flattened Device Tree)")
178 /* Maintainer: Kukjin Kim <[email protected]> */
179 .init_irq = exynos5_init_irq,
180 .smp = smp_ops(exynos_smp_ops),
181 .map_io = exynos5_dt_map_io,
182 .handle_irq = gic_handle_irq,
183 .init_machine = exynos5_dt_machine_init,
184 .init_late = exynos_init_late,
185 .timer = &exynos4_timer,
186 .dt_compat = exynos5_dt_compat,
187 .restart = exynos5_restart,
188 .reserve = exynos5_reserve,
189 MACHINE_END
它的.init_machine成員函式就針對不同的machine進行了不同的分支處理:
126 static void __init exynos5_dt_machine_init(void)
127 {
128 …
149
150 if (of_machine_is_compatible("samsung,exynos5250"))
151 of_platform_populate(NULL, of_default_bus_match_table,
152 exynos5250_auxdata_lookup, NULL);
153 else if (of_machine_is_compatible("samsung,exynos5440"))
154 of_platform_populate(NULL, of_default_bus_match_table,
155 exynos5440_auxdata_lookup, NULL);
156 }
使用Device Tree後,驅動需要與.dts中描述的裝置結點進行匹配,從而引發驅動的probe()函式執行。對於platform_driver而言,需要新增一個OF匹配表,如前文的.dts檔案的"acme,a1234-i2c-bus"相容I2C控制器結點的OF匹配表可以是:
436 static const struct of_device_id a1234_i2c_of_match[] = {
437 { .compatible = "acme,a1234-i2c-bus ", },
438 {},
439 };
440 MODULE_DEVICE_TABLE(of, a1234_i2c_of_match);
441
442 static struct platform_driver i2c_a1234_driver = {
443 .driver = {
444 .name = "a1234-i2c-bus ",
445 .owner = THIS_MODULE,
449 .of_match_table = a1234_i2c_of_match,
450 },
451 .probe = i2c_a1234_probe,
452 .remove = i2c_a1234_remove,
453 };
454 module_platform_driver(i2c_a1234_driver);
對於I2C和SPI從裝置而言,同樣也可以透過of_match_table新增匹配的.dts中的相關結點的compatible屬性,如sound/soc/codecs/wm8753.c中的:
1533 static const struct of_device_id wm8753_of_match[] = {
1534 { .compatible = "wlf,wm8753", },
1535 { }
1536 };
1537 MODULE_DEVICE_TABLE(of, wm8753_of_match);
1587 static struct spi_driver wm8753_spi_driver = {
1588 .driver = {
1589 .name = "wm8753",
1590 .owner = THIS_MODULE,
1591 .of_match_table = wm8753_of_match,
1592 },
1593 .probe = wm8753_spi_probe,
1594 .remove = wm8753_spi_remove,
1595 };
1640 static struct i2c_driver wm8753_i2c_driver = {
1641 .driver = {
1642 .name = "wm8753",
1643 .owner = THIS_MODULE,
1644 .of_match_table = wm8753_of_match,
1645 },
1646 .probe = wm8753_i2c_probe,
1647 .remove = wm8753_i2c_remove,
1648 .id_table = wm8753_i2c_id,
1649 };
不過這邊有一點需要提醒的是,I2C和SPI外設驅動和Device Tree中裝置結點的compatible 屬性還有一種弱式匹配方法,就是別名匹配。compatible 屬性的組織形式為<manufacturer>,<model>,別名其實就是去掉compatible 屬性中逗號前的manufacturer字首。關於這一點,可檢視drivers/spi/spi.c的原始碼,函式spi_match_device()暴露了更多的細節,如果別名出現在裝置spi_driver的id_table裡面,或者別名與spi_driver的name欄位相同,SPI裝置和驅動都可以匹配上:90 static int spi_match_device(struct device *dev, struct device_driver *drv)
91 {
92 const struct spi_device *spi = to_spi_device(dev);
93 const struct spi_driver *sdrv = to_spi_driver(drv);
94
95 /* Attempt an OF style match */
96 if (of_driver_match_device(dev, drv))
97 return 1;
98
99 /* Then try ACPI */
100 if (acpi_driver_match_device(dev, drv))
101 return 1;
102
103 if (sdrv->id_table)
104 return !!spi_match_id(sdrv->id_table, spi);
105
106 return strcmp(spi->modalias, drv->name) == 0;
107 }
71 static const struct spi_device_id *spi_match_id(const struct spi_device_id *id,
72 const struct spi_device *sdev)
73 {
74 while (id->name[0]) {
75 if (!strcmp(sdev->modalias, id->name))
76 return id;
77 id++;
78 }
79 return NULL;
80 }
4. 常用OF API
在Linux的BSP和驅動程式碼中,還經常會使用到Linux中一組Device Tree的API,這些API通常被冠以of_字首,它們的實現程式碼位於核心的drivers/of目錄。這些常用的API包括:
int of_device_is_compatible(const struct device_node *device,const char *compat);
判斷裝置結點的compatible 屬性是否包含compat指定的字串。當一個驅動支援2個或多個裝置的時候,這些不同.dts檔案中裝置的compatible 屬性都會進入驅動 OF匹配表。因此驅動可以透過Bootloader傳遞給核心的Device Tree中的真正結點的compatible 屬性以確定究竟是哪一種裝置,從而根據不同的裝置型別進行不同的處理。如drivers/pinctrl/pinctrl-sirf.c即兼容於"sirf,prima2-pinctrl",又兼容於"sirf,prima2-pinctrl",在驅動中就有相應分支處理:
1682 if (of_device_is_compatible(np, "sirf,marco-pinctrl"))
1683 is_marco = 1;
struct device_node *of_find_compatible_node(struct device_node *from,const char *type, const char *compatible);
根據compatible屬性,獲得裝置結點。遍歷Device Tree中所有的裝置結點,看看哪個結點的型別、compatible屬性與本函式的輸入引數匹配,大多數情況下,from、type為NULL。
int of_property_read_u8_array(const struct device_node *np,
const char *propname, u8 *out_values, size_t sz);
int of_property_read_u16_array(const struct device_node *np,
const char *propname, u16 *out_values, size_t sz);
int of_property_read_u32_array(const struct device_node *np,
const char *propname, u32 *out_values, size_t sz);
int of_property_read_u64(const struct device_node *np, const char
*propname, u64 *out_value);
讀取裝置結點np的屬性名為propname,型別為8、16、32、64位整型陣列的屬性。對於32位處理器來講,最常用的是of_property_read_u32_array()。如在arch/arm/mm/cache-l2x0.c中,透過如下語句讀取L2 cache的"arm,data-latency"屬性:
534 of_property_read_u32_array(np, "arm,data-latency",
535 data, ARRAY_SIZE(data));
在arch/arm/boot/dts/vexpress-v2p-ca9.dts中,含有"arm,data-latency"屬性的L2 cache結點如下:
137 L2: [email protected] {
138 compatible = "arm,pl310-cache";
139 reg = <0x1e00a000 0x1000>;
140 interrupts = <0 43 4>;
141 cache-level = <2>;
142 arm,data-latency = <1 1 1>;
143 arm,tag-latency = <1 1 1>;
144 }
有些情況下,整形屬性的長度可能為1,於是核心為了方便呼叫者,又在上述API的基礎上封裝出了更加簡單的讀單一整形屬性的API,它們為int of_property_read_u8()、of_property_read_u16()等,實現於include/linux/of.h:
513 static inline int of_property_read_u8(const struct device_node *np,
514 const char *propname,
515 u8 *out_value)
516 {
517 return of_property_read_u8_array(np, propname, out_value, 1);
518 }
519
520 static inline int of_property_read_u16(const struct device_node *np,
521 const char *propname,
522 u16 *out_value)
523 {
524 return of_property_read_u16_array(np, propname, out_value, 1);
525 }
526
527 static inline int of_property_read_u32(const struct device_node *np,
528 const char *propname,
529 u32 *out_value)
530 {
531 return of_property_read_u32_array(np, propname, out_value, 1);
532 }
int of_property_read_string(struct device_node *np, const char
*propname, const char **out_string);
int of_property_read_string_index(struct device_node *np, const char
*propname, int index, const char **output);
前者讀取字串屬性,後者讀取字串陣列屬性中的第index個字串。如drivers/clk/clk.c中的of_clk_get_parent_name()透過of_property_read_string_index()遍歷clkspec結點的所有"clock-output-names"字串陣列屬性。
1759 const char *of_clk_get_parent_name(struct device_node *np, int index)
1760 {
1761 struct of_phandle_args clkspec;
1762 const char *clk_name;
1763 int rc;
1764
1765 if (index < 0)
1766 return NULL;
1767
1768 rc = of_parse_phandle_with_args(np, "clocks", "#clock-cells", index,
1769 &clkspec);
1770 if (rc)
1771 return NULL;
1772
1773 if (of_property_read_string_index(clkspec.np, "clock-output-names",
1774 clkspec.args_count ? clkspec.args[0] : 0,
1775 &clk_name) < 0)
1776 clk_name = clkspec.np->name;
1777
1778 of_node_put(clkspec.np);
1779 return clk_name;
1780 }
1781 EXPORT_SYMBOL_GPL(of_clk_get_parent_name);
static inline bool of_property_read_bool(const struct device_node *np,
const char *propname);
如果裝置結點np含有propname屬性,則返回true,否則返回false。一般用於檢查空屬性是否存在。
void __iomem *of_iomap(struct device_node *node, int index);
通過裝置結點直接進行裝置記憶體區間的 ioremap(),index是記憶體段的索引。若裝置結點的reg屬性有多段,可通過index標示要ioremap的是哪一段,只有1段的情況,index為0。採用Device Tree後,大量的裝置驅動通過of_iomap()進行對映,而不再通過傳統的ioremap。
unsigned int irq_of_parse_and_map(struct device_node *dev, int index);
透過Device Tree或者裝置的中斷號,實際上是從.dts中的interrupts屬性解析出中斷號。若裝置使用了多箇中斷,index指定中斷的索引號。
還有一些OF API,這裡不一一列舉,具體可參考include/linux/of.h標頭檔案。
5. 總結
ARM社群一貫充斥的大量垃圾程式碼導致Linus盛怒,因此社群在2011年到2012年進行了大量的工作。ARM Linux開始圍繞Device Tree展開,Device Tree有自己的獨立的語法,它的原始檔為.dts,編譯後得到.dtb,Bootloader在引導Linux核心的時候會將.dtb地址告知核心。之後核心會展開Device Tree並建立和註冊相關的裝置,因此arch/arm/mach-xxx和arch/arm/plat-xxx中大量的用於註冊platform、I2C、SPI板級資訊的程式碼被刪除,而驅動也以新的方式和.dts中定義的裝置結點進行匹配。