論文筆記:Spectral Normalization for Generative Adversarial Networks [ICLR2018 oral]
Spectral Normalization for Generative Adversarial Networks
原文連結:傳送門
一篇純數學類文章,有興趣的時候再看!
Emma
CUHK
2018.02.26
相關推薦
論文筆記:Spectral Normalization for Generative Adversarial Networks [ICLR2018 oral]
Spectral Normalization for Generative Adversarial Networks 原文連結:傳送門 一篇純數學類文章,有興趣的時候再看! Emma CUH
論文筆記:Distant Supervision for Relation Extraction via Piecewise Convolutional Neural Networks
Distant Supervision for Relation Extraction via Piecewise Convolutional Neural Networks ========簡陋的記錄=========== 背景知識:Distant Sup
影象隱寫術分析論文筆記:Deep learning for steganalysis via convolutional neural networks
好久沒有寫論文筆記了,這裡開始一個新任務,即影象的steganalysis任務的深度網路模型。現在是論文閱讀階段,會陸續分享一些相關論文,以及基礎知識,以及傳統方法的思路,以資借鑑。 這一篇是Media Watermarking, Security, and Forensi
論文筆記:Perceptual Losses for Real-Time Style Transfer and Super-Resolution[doing]
1.transformation: image to image 2.perceptual losses: psnr是per-pixel的loss,值高未必代表圖片質量好,廣泛應用只是因為
論文翻譯:Speech Super Resolution Generative Adversarial Network
部落格作者:凌逆戰 論文地址:https://ieeexplore.ieee.org/document/8682215 部落格地址:https://www.cnblogs.com/LXP-Never/p/10874993.html 論文作者:Sefik Emre Eskimez , Ka
論文筆記:IRGAN:A Minimax Game for Unifying Generative and Discriminative Information
2017 SIGIR 簡單介紹 IRGAN將GAN用在資訊檢索(Information Retrieval)領域,通過GAN的思想將生成檢索模型和判別檢索模型統一起來,對於生成器採用了基於策略梯度的強化學習來訓練,在三種典型的IR任務上(四個資料集)得到了更顯著的效果。 生成式和判別式的檢索模型 生成式檢索模
論文解讀:DeLiGAN: Generative Adversarial Networks for Diverse and Limited Data
前言:DeLiGAN是計算機視覺頂會CVPR2017發表的一篇論文,本文將結合Python原始碼學習DeLiGAN中的核心內容。DeLiGAN最大的貢獻就是將生成對抗網路(GANs)的輸入潛空間編碼為混合模型(高斯混合模型),從而使得生成對抗網路(GANs)在數量有限但具有多樣性的訓練資料上表現出較
【論文筆記】An Intelligent Fault Diagnosis Method Using: Multivariate Anomaly Detection for Time Series Data with Generative Adversarial Networks
ivar 單位矩陣 作用 一次 一個 http example tps 計算 論文來源:IEEE TRANSACTIONS ON INDUSTRIAL ELECTRONICS 2016年的文章,SCI1區,提出了兩階段的算法。第一個階段使用Sparse filtering
論文筆記:目標追蹤-CVPR2014-Adaptive Color Attributes for Real-time Visual Tracking
exploit orm dom ons tail red 最好 早期 形式化 基於自適應顏色屬性的目標追蹤 Adaptive Color Attributes for Real-Time Visual Tracking 基於自適應顏色屬性的實時視覺追蹤 3月講的第一
深度學習論文筆記:Deep Residual Networks with Dynamically Weighted Wavelet Coefficients for Fault Diagnosis of Planetary Gearboxes
這篇文章將深度學習演算法應用於機械故障診斷,採用了“小波包分解+深度殘差網路(ResNet)”的思路,將機械振動訊號按照故障型別進行分類。 文章的核心創新點:複雜旋轉機械系統的振動訊號包含著很多不同頻率的衝擊和振盪成分,而且不同頻帶內的振動成分在故障診斷中的重要程度經常是不同的,因此可以按照如下步驟設計深度
論文筆記:Learning Region Features for Object Detection
中心思想 繼Relation Network實現可學習的nms之後,MSRA的大佬們覺得目標檢測器依然不夠fully learnable,這篇文章類似之前的Deformable ROI Pooling,主要在ROI特徵的組織上做文章,文章總結了現有的各種ROI Pooling變體,提出了一個統一的數學表示式
論文筆記:雙線性模型 《Bilinear CNN Models for Fine-Grained Visual Recognition》
雙線性模型是2015年提出的一種細粒度影象分類模型。該模型使用的是兩個並列的CNN模型,這種CNN模型使用的是AlexNet或VGGNet去掉最後的全連線層和softmax層,這個作為特徵提取器,然後使用SVM作為最後的線性分類器。當然,作者還在實驗中嘗試了多種方法,比如最後使用softmax但
論文筆記:Feature Pyramid Networks for Object Detection
初衷 Feature pyramids are a basic component in recognition systems for detecting objects at different scales. But recent deep
論文筆記:An End-to-End Trainable Neural Network for Image-based Sequence Recognition and Its Application
1.歷史方法 1)基於字元的DCNN,比如photoOCR.單個字元的檢測與識別。要求單個字元的檢測器效能很強,crop的足夠好。 2)直接對圖片進行分類。9萬個單詞,組合成無數的單詞,無法直接應用 3)RNN,訓練和測試均不需要每個字元的位置。但是需要預處理,從圖片得到特
論文筆記:Is object localization for free?
Is object localization for free? Weakly-supervised learning with convolutional neural networks 摘要 提出一個弱監督卷積神經網路for 分類。主要貢獻有:
論文筆記:MatchNet: Unifying Feature and Metric Learning for Patch-Based Matching
Abstract MatchNet:一個用來從patches中提取特徵的深度卷積網路 + 一個用來比較提取出的特徵相似度的三層全連結網路構成。 Introduction 在MatchNet中,每個patch輸入卷積網路,生成一個固定維度的類似
論文筆記:Deep neural networks for YouTube recommendations
https://blog.csdn.net/xiongjiezk/article/details/73445835 Download [1] Covington P, Adams J, Sargin E. Deep neural networks for youtube recommen
論文筆記:Fisher Kernels on Visual Vocab ularies for Image Categorization
Fisher Kernels on Visual Vocabularies for Image Categorization 論文連結:CVPR 2006 在模式分類領域,Fisher Vector(FV)是一個強有力的構架,因為他結合了生成式(概率密
論文筆記:DRAW: A Recurrent Neural Network For Image Generation
DRAW: A Recurrent Neural Network For Image Generation 2019-01-14 19:42:50 Paper:http://proceedings.mlr.press/v37/gregor15.pdf 本文將 V
【論文筆記】Generative Adversarial Networks
該文提出一種新穎的對抗式生成模型架構,這種框架同時訓練兩個模型,一個是生成模型G,用來習得資料的真實分佈,一個是判別模型D,用來判斷一個樣本是否是真實樣本。G的訓練過程就是儘可能地讓D犯錯誤,該網路最後的目標就是讓G通過輸入的噪聲重構出訓練資料的分佈,並且讓D