1. 程式人生 > >邏輯思維題目及答案(二)

邏輯思維題目及答案(二)

【21】U2合唱團在17分鐘 內得趕到演唱會場,途中必需跨過一座橋,四個人從橋的同一端出發,你得幫助他們到達另一端,天色很暗,而他們只有一隻手電筒。一次同時最多可以有兩人一起 過橋,而過橋的時候必須持有手電筒,所以就得有人把手電筒帶來帶去,來回橋兩端。手電筒是不能用丟的方式來傳遞的。四個人的步行速度各不同,若兩人同行則 以較慢者的速度為準。Bono需花1分鐘過橋,Edge需花2分鐘過橋,Adam需花5分鐘過橋,Larry需花10分鐘過橋。他們要如何在17分鐘內過 橋呢?

答: 2+1先過 2  ,然後1回來送手電筒 1  5+10再過 10  2回來送手電筒 2  2+1過去 2  

總共2+1+10+2+2=17分鐘  。

【22】一個家庭有兩個小孩,其中有一個是女孩,問另一個也是女孩的概率(假定生男生女的概率一樣)

答: 1/3  樣本空間為(男男)(女女)(男女)(女男)  A=(已知其中一個是女孩)=)(女女)(男女)(女男)  B=(另一個也是女孩)=(女女)  

於是P(B/A)=P(AB)/P(A)=(1/4)/(3/4)=1/3  

【23】為什麼下水道的蓋子是圓的?  

答:1、圓的,好嵌合進地面.以免留下稜角傷害人.
2、圓的掉不下去啊~用方的話可能從對角線掉下去.
3、圓的蓋子在更換時可以滾動,比較省力.
另外,從力學的角度來分析,圓形手裡比較均勻,不存在相對的應力集中區,不容易損壞.
4、可以說是一個完美的圓柱體.
5、因為下水道的那個口是圓的.
6、是個營銷學的問題,就是幫買賣有關的!-因為圓形切去了4個角,可以最大程度的節約了成本.
7、從任何角度都可以直接蓋好井口.方的就必須與井口調整成一致的角度.
8、圓的直徑只有一個,所以圓形井蓋在井口上任意轉動,都不會掉進井口.而方型井蓋,無論是正方形的邊長還是長方形的長或寬,都必然小於對角線的長度;如果方型井蓋側立在井口上,就很容易掉進井口.
9、從力學的角度來看,圓形井蓋與支撐點的受力量是均勻的而方型或長方形井蓋的受力點則靠近於施力點 
10、只能是有些蓋子是圓的,當需要覆蓋的洞是圓形時,通常蓋子也是圓的.

【24】有7克、2克砝碼各一個,天平一隻,如何只用這些物品三次將140克的鹽分成50、90克各一份?  

答:140->70+70 70->35+35  35+70=105  

105->50+7 + 55+2  55+35=90

【25】晶片測試:有2k塊晶片,已知好晶片比壞晶片多.請設計演算法從其中找出一片 好晶片,說明你所用的比較次數上限. 其中:好晶片和其它晶片比較時,能正確給出另一塊晶片是好還是壞. 壞晶片和其它晶片比較時,會隨機的給出好或是壞。  

答:把第一塊晶片與其它逐一對比,看看其它晶片對第一塊晶片給出的是好是壞,如果給出是好的過半,那麼說明這是好晶片,完畢。如果給出的是壞的過半,說明第一塊晶片是壞的,那麼就要在那些在給出第一塊晶片是壞的晶片中,重複上述步驟,直到找到好的晶片為止。 

【26】12個球一個天平,現知道只有一個和其它的重量不同,問怎樣稱才能用三次就找到那個球。13個呢?(注意此題並未說明那個球的重量是輕是重)  

答:12個時可以找出那個是重還是輕,13個時只能找出是哪個球,輕重不知。   

 把球編為①②③④⑤⑥⑦⑧⑨⑩⑾⑿。(13個時編號為⒀)    

第一次稱:先把①②③④與⑤⑥⑦⑧放天平兩邊,      ㈠如相等,說明特別球在剩下4個球中。        把①⑨與⑩⑾作第二次稱量,  

      ⒈如相等,說明⑿特別,把①與⑿作第三次稱量即可判斷是⑿是重還是輕        ⒉如①⑨<⑩⑾說明要麼是⑩⑾中有一個重的,要麼⑨是輕的。  

        把⑩與⑾作第三次稱量,如相等說明⑨輕,不等可找出誰是重球。        ⒊如①⑨>⑩⑾說明要麼是⑩⑾中有一個輕的,要麼⑨是重的。  

        把⑩與⑾作第三次稱量,如相等說明⑨重,不等可找出誰是輕球。      ㈡如左邊<右邊,說明左邊有輕的或右邊有重的        把①②⑤與③④⑥做第二次稱量  

      ⒈如相等,說明⑦⑧中有一個重,把①與⑦作第三次稱量即可判斷是⑦與⑧中誰是重球  

      ⒉如①②⑤<③④⑥說明要麼是①②中有一個輕的,要麼⑥是重的。          把①與②作第三次稱量,如相等說明⑥重,不等可找出誰是輕球。        ⒊如①②⑤>③④⑥說明要麼是⑤是重的,要麼③④中有一個是輕的。          把③與④作第三次稱量,如相等說明⑤重,不等可找出誰是輕球。      ㈢如左邊>右邊,參照㈡相反進行。    當13個球時,第㈠步以後如下進行。      把①⑨與⑩⑾作第二次稱量,  

    ⒈如相等,說明⑿⒀特別,把①與⑿作第三次稱量即可判斷是⑿還是⒀特別,但判斷不了輕重了。  

    ⒉不等的情況參見第㈠步的⒉⒊  

【27】100個人回答五道試題,有81人答對第一題,91人答對第二題,85人答對第三題,79人答對第四題,74人答對第五題,答對三道題或三道題以上的人算及格, 那麼,在這100人中,至少有( )人及格。  

答:首先求解原題。每道題的答錯人數為(次序不重要):26,21,19,15,9  第3分佈層:答錯3道題的最多人數為:(26+21+19+15+9)/3=30  第2分佈層:答錯2道題的最多人數為:(21+19+15+9)/2=32  第1分佈層:答錯1道題的最多人數為:(19+15+9)/1=43  Max_3=Min(30, 32, 43)=30。因此答案為:100-30=70。  

其實,因為26小於30,所以在求出第一分佈層後,就可以判斷答案為70了。  要讓及格的人數最少,就要做到兩點:

  1. 不及格的人答對的題目儘量多,這樣就減少了及格的人需要答對的題目的數量,也就只需要更少的及格的人  

2. 每個及格的人答對的題目數儘量多,這樣也能減少及格的人數  由1得每個人都至少做對兩道題目  

由2得要把剩餘的210道題目分給其中的70人: 210/3 = 70,讓這70人全部題目都做對,而其它30人只做對了兩道題  

也很容易給出一個具體的實現方案:  

讓70人答對全部五道題,11人僅答對第一、二道題,10人僅答對第二、三道題,5人答對第三、四道題,4人僅答對第四、五道題  

顯然稍有變動都會使及格的人數上升。所以最少及格人數就是70人!  

【28】陳奕迅有首歌叫十年呂珊有首歌叫3650夜那現在問,十年可能有多少天?  十年可能包含2-3個閏年,3652或3653天。  

答:1900年這個閏年就是28天,1898~1907這10年就是3651天,閏年如果是整百的倍數,如1800,1900,那麼這個數必須是400的倍數才有29天,比如1900年2月有28天,2000年2月有29天。  

【29】1,11,21,1211,111221,下一個數是什麼?  

答:下行是對上一行的解釋 所以新的應該是3個1 2個2 1個1 :312211  

【30】燒一根不均勻的繩要用一個小時,如何用它來判斷半個小時?燒一根不均勻的繩,從頭燒到尾總共需要1個小時。現在有若干條材質相同的繩子,問如何用燒繩的方法來計時一個小時十五分鐘呢? (微軟的筆試題)  

答:一,一根繩子從兩頭燒,燒完就是半個小時。  

二,一根要一頭燒,一根從兩頭燒,兩頭燒完的時候(30分),將剩下的一根另一端點著,燒盡就是45分鐘。再從兩頭點燃第三根,燒盡就是1時15分。   

【31】共有三類藥,分別重1g,2g,3g,放到若干個瓶子中,現在能確定每個瓶子中只有其中一種藥,且每瓶中的藥片足夠多,能只稱一次就知道各個瓶子中都是盛的哪類藥嗎?如果有4類藥呢?5類呢?N類呢(N可數)?如果是共有m個瓶子盛著n類藥呢(m,n為正整數,藥的質量各不相同但各種藥的質量已知)?你能只稱一次就知道每瓶的藥是什麼嗎?  注:當然是有代價的,稱過的藥我們就不用了  

答:第一個瓶子拿出一片,第二個瓶子拿出四片,第三個拿出十六片,„„第m個拿出n+1的m-1次方片。把所有這些藥片放在一起稱重量。  

【32】假設在桌上有三個密封的盒,一個盒中有2枚銀幣(1銀幣=10便士),一個盒中有2枚鎳幣(1鎳幣=5便士),還有一個盒中有1枚銀幣和1枚鎳幣。這些盒子被標上10便士、 15便士和20便士,但每個標籤都是錯誤的。允許你從一個盒中拿出1枚硬幣放在盒前,看到這枚硬幣,你能否說出每個盒內裝的東西呢?  

答:取出標著15便士的盒中的一個硬幣,如果是銀的說明這個盒是20便士的,如果是鎳的說明這個盒是10便士的,再由每個盒的標籤都是錯誤的可以推出其它兩個盒裡的東西。  【33】有一個大西瓜,用水果刀平整地切,總共切9刀,最多能切成多少份,最少能切成多少份?主要是過程,結果並不是最重要的  最少10,最多130  

見下表,表中藍色部分服從2為底的指數函式規律,紅色部分的數值均為其左邊與左上角的兩個數之和。    

x 0 1 2 3 4 5 6 7 8 9  

x個點最多能把直線分成多少部分 1 2 3 4 5 6 7 8 9 10  

x條直線最多能把平面分成多少部分 1 2 4 7 11 16 22 29 37 46  

x個平面最多能把空間分成多少部分 1 2 4 8 15 26 42 64 93 130

【34】一個巨大的圓形水池,周圍佈滿了老鼠洞。貓追老鼠到水池邊,老鼠未來得及進洞就掉入水池裡。貓繼續沿水池邊緣企圖捉住老鼠(貓不入水)。已知V貓=4V鼠。問老鼠是否有辦法擺脫貓的追逐?  

答:第一步:游到水池中心。  

第二步:從水池中心遊到距中心R/4處,並始終保持鼠、水池中心、貓在一直線上。  第三步:沿與中心相反方向的直線遊3R/4就可以到達水池邊,而貓沿圓周到達那裡需要3.14R,所以捉不到老鼠。

【35】有三個桶,兩個大的可裝8斤的水,一個小的可裝3斤的水,現在有16斤水裝滿了兩大桶就是8斤的桶,小桶空著,如何把這16斤水分給4個人,每人4斤。沒有其他任何工具,4人自備容器,分出去的水不可再要回來。  

答:表示為880,接下來,將一個大桶的水倒入小桶中,倒滿,表示為853,(第2個大桶減3,小桶加3)則過程如下:  

880——853:將3斤給第1個人,變為850(此時4人分別有水3-0-0-0)  850——823:將2斤給第2個人,變為803(此時4人分別有水3-2-0-0)  

803——830——533——560——263——281:將1斤給第1個人,變為280(此時4人分別有水4-2-0-0)  

280——253——703——730——433——460——163:將1斤給第3個人,變為063(此時4人分別有水4-2-1-0)  

063——081:將1斤給第4個人,變為080(此時4人分別有水4-2-1-1)  

080——053——350——323:將2斤給第2個人,將2個3斤分別給第3、4個人,(此時4人分別有水4-4-4-4)   

【36】從前有一位老鐘錶匠,為一個教堂裝一隻大鐘。他年老眼花,把長短針裝配錯了,短針走的速度反而是長針的12倍。裝配的時候是上午6點,他把短針指在“6 ”上,長針指在“12”上。老鐘錶匠裝好就回家去了。人們看這鐘一會兒7點,過了不一會兒就8點了,都很奇怪,立刻去找老鐘錶匠。等老鐘錶匠趕到,已經是下午7點多鐘。他掏出懷錶來一對,鍾準確無誤,疑心人們有意捉弄他,一生氣就回去了。這鐘還是8點、9點地跑,人們再去找鐘錶匠。老鐘錶匠第二天早晨8點多趕來用表一對,仍舊準確無誤。請你想一想,老鐘錶匠第一次對錶的時候是7點幾分?第二次對錶又是8點幾分?  

答:7點x分:(7+x/60)/12=x/60 x=7*60=420/11=38.2  第一次是7點38分,第二次是8點44分  

【37】今有2匹馬、3頭牛和4只羊,它們各自的總價都不滿10000文錢(古時的貨幣單位)。如果2匹馬加上1頭牛,或者3 頭牛加上1只羊,或者4只羊加上1匹馬,那麼它們各自的總價都正好是10000文錢了。問:馬、牛、羊的單價各是多少文錢?  

答:設馬=x、牛=y和羊=z,

如果2匹馬加上1頭牛,即2x+y=10000①

或者3 頭牛加上1只羊,即3y+z=10000②

或者4只羊加上1匹馬,即4z+x=10000③

通過3式解得

x=3600、y=2800、z=1600

【38】一天,harlan的店裡來了一位顧客,挑了25元的貨,顧客拿出100元,harlan沒零錢找不開,就到隔壁飛白的店裡把這100元換成零錢,回來給顧客找了75元零錢。過一會,飛白來找harlan,說剛才的是假錢,harlan馬上給飛白換了張真錢,問harlan賠了多少錢? 

答:100,不管一切怎麼倒來倒去,都因為這100假錢,如果這一百不是假錢,就都正常了,所以100真錢突然變成假錢的話,你是不是損失100.完畢!

【39】猴子爬繩這道力學怪題乍看非常簡單,可是據說它卻使劉易斯.卡羅爾感到困惑。至於這道怪題是否由這位因《愛麗絲漫遊奇境記》而聞名的牛津大學數學專家提出來的,那就不清楚了。總之,在一個不走運的時刻,他就下述問題徵詢人們的意見:一根繩子穿過無摩擦力的滑輪,在其一端懸掛著一隻10磅重的砝碼,繩子的另一端有隻猴子,同砝碼正好取得平衡。當猴子開始向上爬時,砝碼將如何動作呢?

答:"真奇怪,"卡羅爾寫道,"許多優秀的數學家給出了截然不同的答案。普賴斯認為砝碼將向上升,而且速度越來越快。克利夫頓(還有哈考特)則認為,砝碼將以與猴子一樣的速度向上升起,然而桑普森卻說,砝碼將會向下降!"一位傑出的機械工程師說"這不會比蒼蠅在繩子上爬更起作用",而一位科學家卻認為"砝碼的上升或下降將取決於猴子吃蘋果速度的倒數",然而還得從中求出猴子尾巴的平方根。嚴肅地說,這道題目非常有趣,值得認真推敲。它很能說明趣題與力學問題之間的緊密聯絡。  砝碼將以與猴子相同的速度上升,因為它們質量相同,受力也相同。

【40】兩個空心球,大小及重量相同,但材料不同。一個是金,一個是鉛。空心球表面圖有相同顏色的油漆。現在要求在不破壞表面油漆的條件下用簡易方法指出哪個是金的,哪個是鉛的。  

答:旋轉看速度,金的密度大,質量相同,所以金球的實際體積較小,因為外半徑相同,所以金球的內半徑較大,所以金球的轉動慣量大,在相同的外加力矩之下,金球的角加速度較小,所以轉得慢。