人臉檢測和識別 原始碼 下載-opencv3+python3.6完整實戰專案原始碼 識別視訊《歡樂頌》中人物
阿新 • • 發佈:2018-12-31
import os import sys import cv2 import numpy as np def normalize(X, low, high, dtype=None): """Normalizes a given array in X to a value between low and high.""" X = np.asarray(X) minX, maxX = np.min(X), np.max(X) # normalize to [0...1]. X = X - float(minX) X = X / float((maxX - minX)) # scale to [low...high]. X = X * (high-low) X = X + low if dtype is None: return np.asarray(X) return np.asarray(X, dtype=dtype) def read_images(path, sz=None): """Reads the images in a given folder, resizes images on the fly if size is given. Args: path: Path to a folder with subfolders representing the subjects (persons). sz: A tuple with the size Resizes Returns: A list [X,y] X: The images, which is a Python list of numpy arrays. y: The corresponding labels (the unique number of the subject, person) in a Python list. """ c = 0 X,y = [], [] for dirname, dirnames, filenames in os.walk(path): for subdirname in dirnames: subject_path = os.path.join(dirname, subdirname) for filename in os.listdir(subject_path): try: if (filename == ".directory"): continue filepath = os.path.join(subject_path, filename) im = cv2.imread(os.path.join(subject_path, filename), cv2.IMREAD_GRAYSCALE) if (im is None): print ("image " + filepath + " is none") else: print (filepath) # resize to given size (if given) if (sz is not None): im = cv2.resize(im, (200, 200)) X.append(np.asarray(im, dtype=np.uint8)) y.append(c) # except IOError, (errno, strerror): # print ("I/O error({0}): {1}".format(errno, strerror)) except: print ("Unexpected error:", sys.exc_info()[0]) raise print (c) c = c+1 # print (X) #2017-6-11 add print (y) return [X,y] def face_rec(): names = ['fanshengmei'] if len(sys.argv) < 2: print ("USAGE: facerec_demo.py </path/to/images> [</path/to/store/images/at>]") sys.exit() [X,y] = read_images(sys.argv[1]) y = np.asarray(y, dtype=np.int32) if len(sys.argv) == 3: out_dir = sys.argv[2] model = cv2.face.createEigenFaceRecognizer() model.train(np.asarray(X), np.asarray(y)) camera = cv2.VideoCapture("2.mp4") face_cascade = cv2.CascadeClassifier('./cascades/haarcascade_frontalface_alt2.xml') while (True): read, img = camera.read() # faces = face_cascade.detectMultiScale(img, 1.3, 5) faces = face_cascade.detectMultiScale(img, 1.4, 5) for (x, y, w, h) in faces: img = cv2.rectangle(img,(x,y),(x+w,y+h),(255,0,0),2) gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY) # print(gray) roi = gray[x:x+w, y:y+h] # print(roi) try: roi = cv2.resize(roi, (200, 200), interpolation=cv2.INTER_LINEAR) print (roi.shape) params = model.predict(roi) print ("Label: %s, Confidence: %.2f" % (params[0], params[1])) cv2.putText(img, names[params[0]], (x, y - 20), cv2.FONT_HERSHEY_SIMPLEX, 1, 255, 2) if (params[0] == 0): cv2.imwrite('face_rec.jpg', img) except: continue cv2.imshow("camera", img) if cv2.waitKey(1000 // 12) & 0xff == ord("q"): break cv2.destroyAllWindows() if __name__ == "__main__": face_rec() def original(): # This is where we write the images, if an output_dir is given # in command line: out_dir = None names = ['Joe', 'Jane', 'Jack'] # jm->Joe、 jb->Jane、sw->Jack # You'll need at least a path to your image data, please see # the tutorial coming with this source code on how to prepare # your image data: if len(sys.argv) < 2: print ("USAGE: facerec_demo.py </path/to/images> [</path/to/store/images/at>]") sys.exit() # Now read in the image data. This must be a valid path! [X,y] = read_images(sys.argv[1]) # Convert labels to 32bit integers. This is a workaround for 64bit machines, # because the labels will truncated else. This will be fixed in code as # soon as possible, so Python users don't need to know about this. # Thanks to Leo Dirac for reporting: y = np.asarray(y, dtype=np.int32) # If a out_dir is given, set it: if len(sys.argv) == 3: out_dir = sys.argv[2] # Create the Eigenfaces model. We are going to use the default # parameters for this simple example, please read the documentation # for thresholding: #model = cv2.face.createLBPHFaceRecognizer() model = cv2.face.createEigenFaceRecognizer() # Read # Learn the model. Remember our function returns Python lists, # so we use np.asarray to turn them into NumPy lists to make # the OpenCV wrapper happy: model.train(np.asarray(X), np.asarray(y)) # We now get a prediction from the model! In reality you # should always use unseen images for testing your model. # But so many people were confused, when I sliced an image # off in the C++ version, so I am just using an image we # have trained with. # # model.predict is going to return the predicted label and # the associated confidence: camera = cv2.VideoCapture(0) face_cascade = cv2.CascadeClassifier('./cascades/haarcascade_frontalface_default.xml') while (True): read, img = camera.read() faces = face_cascade.detectMultiScale(img, 1.3, 5) for (x, y, w, h) in faces: img = cv2.rectangle(img,(x,y),(x+w,y+h),(255,0,0),2) gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY) roi = gray[x:x+w, y:y+h] roi = cv2.resize(roi, (200, 200), interpolation=cv2.INTER_LINEAR) print (roi.shape) params = model.predict(roi) print ("Label: %s, Confidence: %.2f" % (params[0], params[1])) cv2.putText(img, names[params[0]], (x,y - 20), cv2.FONT_HERSHEY_SIMPLEX, 1, 255, 3) cv2.imshow("camera", img) if cv2.waitKey(1000 / 12) & 0xff == ord("q"): break [p_label, p_confidence] = model.predict(np.asarray(X[0])) # Print it: print ("Predicted label = %d (confidence=%.2f)" % (p_label, p_confidence)) # Cool! Finally we'll plot the Eigenfaces, because that's # what most people read in the papers are keen to see. # # Just like in C++ you have access to all model internal # data, because the cv::FaceRecognizer is a cv::Algorithm. # # You can see the available parameters with getParams(): print (model.getParams()) # Now let's get some data: mean = model.getMat("mean") eigenvectors = model.getMat("eigenvectors") # We'll save the mean, by first normalizing it: mean_norm = normalize(mean, 0, 255, dtype=np.uint8) mean_resized = mean_norm.reshape(X[0].shape) if out_dir is None: cv2.imshow("mean", mean_resized) else: cv2.imwrite("%s/mean.png" % (out_dir), mean_resized) # Turn the first (at most) 16 eigenvectors into grayscale # images. You could also use cv::normalize here, but sticking # to NumPy is much easier for now. # Note: eigenvectors are stored by column: # for i in xrange(min(len(X), 16)): for i in range(min(len(X), 16)): eigenvector_i = eigenvectors[:,i].reshape(X[0].shape) eigenvector_i_norm = normalize(eigenvector_i, 0, 255, dtype=np.uint8) # Show or save the images: if out_dir is None: cv2.imshow("%s/eigenface_%d" % (out_dir,i), eigenvector_i_norm) else: cv2.imwrite("%s/eigenface_%d.png" % (out_dir,i), eigenvector_i_norm) # Show the images: if out_dir is None: cv2.waitKey(0) cv2.destroyAllWindows()