Stanford機器學習筆記-7. Machine Learning System Design
相關推薦
Stanford機器學習筆記-7. Machine Learning System Design
Error analysis: Manually examine the examples (in cross validation set) that your algorithm made errors on. See if you spot any systematic trend in what ty
【原】Coursera—Andrew Ng機器學習—課程筆記 Lecture 11—Machine Learning System Design
Lecture 11—Machine Learning System Design 11.1 垃圾郵件分類 本章中用一個實際例子: 垃圾郵件Spam的分類 來描述機器學習系統設計方法。首先來看兩封郵件,左邊是一封垃圾郵件Spam,右邊是一封非垃圾郵件Non-Spam:垃圾郵件有很多features。如果我
Ng第十一課:機器學習系統的設計(Machine Learning System Design)
未能 計算公式 pos 構建 我們 行動 mic 哪些 指標 11.1 首先要做什麽 11.2 誤差分析 11.3 類偏斜的誤差度量 11.4 查全率和查準率之間的權衡 11.5 機器學習的數據 11.1 首先要做什麽 在接下來的視頻將談到機器
斯坦福大學公開課機器學習:machine learning system design | trading off precision and recall(F score公式的提出:學習算法中如何平衡(取舍)查準率和召回率的數值)
ron 需要 color 不可 關系 machine 同時 機器學習 pos 一般來說,召回率和查準率的關系如下:1、如果需要很高的置信度的話,查準率會很高,相應的召回率很低;2、如果需要避免假陰性的話,召回率會很高,查準率會很低。下圖右邊顯示的是召回率和查準率在一個學習算
斯坦福大學公開課機器學習:machine learning system design | data for machine learning(數據量很大時,學習算法表現比較好的原理)
ali 很多 好的 info 可能 斯坦福大學公開課 數據 div http 下圖為四種不同算法應用在不同大小數據量時的表現,可以看出,隨著數據量的增大,算法的表現趨於接近。即不管多麽糟糕的算法,數據量非常大的時候,算法表現也可以很好。 數據量很大時,學習算法表現比
機器學習實戰(Machine Learning in Action)學習筆記————02.k-鄰近演算法(KNN)
機器學習實戰(Machine Learning in Action)學習筆記————02.k-鄰近演算法(KNN)關鍵字:鄰近演算法(kNN: k Nearest Neighbors)、python、原始碼解析、測試作者:米倉山下時間:2018-10-21機器學習實戰(Machine Learning in
機器學習實戰(Machine Learning in Action)學習筆記————05.Logistic迴歸
機器學習實戰(Machine Learning in Action)學習筆記————05.Logistic迴歸關鍵字:Logistic迴歸、python、原始碼解析、測試作者:米倉山下時間:2018-10-26機器學習實戰(Machine Learning in Action,@author: Peter H
機器學習實戰(Machine Learning in Action)學習筆記————04.樸素貝葉斯分類(bayes)
機器學習實戰(Machine Learning in Action)學習筆記————04.樸素貝葉斯分類(bayes)關鍵字:樸素貝葉斯、python、原始碼解析作者:米倉山下時間:2018-10-25機器學習實戰(Machine Learning in Action,@author: Peter Harri
機器學習實戰(Machine Learning in Action)學習筆記————03.決策樹原理、原始碼解析及測試
機器學習實戰(Machine Learning in Action)學習筆記————03.決策樹原理、原始碼解析及測試關鍵字:決策樹、python、原始碼解析、測試作者:米倉山下時間:2018-10-24機器學習實戰(Machine Learning in Action,@author: Peter Harr
機器學習實戰(Machine Learning in Action)學習筆記————08.使用FPgrowth演算法來高效發現頻繁項集
機器學習實戰(Machine Learning in Action)學習筆記————08.使用FPgrowth演算法來高效發現頻繁項集關鍵字:FPgrowth、頻繁項集、條件FP樹、非監督學習作者:米倉山下時間:2018-11-3機器學習實戰(Machine Learning in Action,@autho
機器學習實戰(Machine Learning in Action)學習筆記————07.使用Apriori演算法進行關聯分析
機器學習實戰(Machine Learning in Action)學習筆記————07.使用Apriori演算法進行關聯分析關鍵字:Apriori、關聯規則挖掘、頻繁項集作者:米倉山下時間:2018-11-2機器學習實戰(Machine Learning in Action,@author: Peter H
機器學習實戰(Machine Learning in Action)學習筆記————06.k-均值聚類演算法(kMeans)學習筆記
機器學習實戰(Machine Learning in Action)學習筆記————06.k-均值聚類演算法(kMeans)學習筆記關鍵字:k-均值、kMeans、聚類、非監督學習作者:米倉山下時間:2018-11-3機器學習實戰(Machine Learning in Action,@author: Pet
Coursera-吳恩達-機器學習-第六週-測驗-Machine Learning System Design
說實話,這一次的測驗對我還是有一點難度的,為了刷到100分,刷了7次(哭)。 無奈,第2道和第4道題總是出錯,後來終於找到錯誤的地方,錯誤原因是思維定式,沒有動腦和審題正確。 這兩道題細節會在下面做出講解。 第二題分析:題意問,使用大量的資料,在哪兩種情況時
機器學習實戰(Machine Learning in Action)學習筆記————10.奇異值分解(SVD)原理、基於協同過濾的推薦引擎、資料降維
關鍵字:SVD、奇異值分解、降維、基於協同過濾的推薦引擎作者:米倉山下時間:2018-11-3機器學習實戰(Machine Learning in Action,@author: Peter Harrington)原始碼下載地址:https://www.manning.com/books/machine-le
機器學習實戰(Machine Learning in Action)學習筆記————10.奇異值分解(SVD)原理、基於協同過濾的推薦引擎、數據降維
www 實現 由於 就是 計算 學習筆記 圖片 blob 標示 關鍵字:SVD、奇異值分解、降維、基於協同過濾的推薦引擎作者:米倉山下時間:2018-11-3機器學習實戰(Machine Learning in Action,@author: Peter Harringto
Ng第十七課:大規模機器學習(Large Scale Machine Learning)
在線 src 化簡 ima 機器學習 learning 大型數據集 machine cnblogs 17.1 大型數據集的學習 17.2 隨機梯度下降法 17.3 微型批量梯度下降 17.4 隨機梯度下降收斂 17.5 在線學習 17.6 映射化簡和數據並行
學習筆記之Machine Learning by Andrew Ng | Coursera
Machine Learning | Coursera https://www.coursera.org/learn/machine-learning Machine learning is the science of getting computers to act without being
終身機器學習(Lifelong Machine Learning)綜述
大概有十幾天了沒有回來更新部落格了吧,這期間遇到了大大小小各種事情,最悲傷的事應該是跟我關係最好的一個哥們的父親去世了,被酒駕的人撞了,希望叔叔在天國安好!再次告誡各位開車一定不能喝酒,不只是對自己負責,也是對他人生命的尊重,在這裡謝過大家了! 下面說一說我這些天積累的一
Stanford機器學習筆記-3.Bayesian statistics and Regularization
3. Bayesian statistics and Regularization Content 3. Bayesian statistics and Regularization. 3.1 Underfitting and overfitting. 3.2 Bayesian
Stanford機器學習筆記-8. 支援向量機(SVMs)概述
8. Support Vector Machines(SVMs) Content 8. Support Vector Machines(SVMs) 8.1 Optimization Objection 8.2 Large margin intuition 8.