1. 程式人生 > >keras——基於神經網路的風格遷移生成藝術字

keras——基於神經網路的風格遷移生成藝術字

Keras是一個高層神經網路API,由純Python編寫而成,至少依賴Tensorflow、Theano、CNTK一種神經網路框架,這裡建議用Tensorflow。

Keras的特性:
1.簡易和快速的原型設計(keras具有高度模組化,極簡,和可擴充特性)
2.支援CNN和RNN,或二者的結合
3.無縫CPU和GPU切換

Keras的設計原則是
1、使用者友好:說白了就是傻瓜式開發,狗上狗也行。
2、模組性:模型可理解為一個層的序列或資料的運算圖,完全可配置的模組可以用最少的代價自由組合在一起。具體而言,網路層、損失函式、優化器、初始化策略、啟用函式、正則化方法都是獨立的模組,你可以使用它們來構建自己的模型。
3、易擴充套件性:新增新模組超級容易,只需要仿照現有的模組編寫新的類或函式即可。建立新模組的便利性使得Keras更適合於先進的研究工作。

4、與Python協作:Keras沒有單獨的模型配置檔案型別(作為對比,caffe有),模型由python程式碼描述,使其更緊湊和更易debug,並提供了擴充套件的便利性。

基於卷積神經網路的風格遷移Keras生成藝術字的demo(原作者餘唯民 & 雷芳涵,程式碼稍作修改,原版程式碼在文末git倉庫

支援一張或兩張風格圖

測試程式碼:

第一次呼叫需要下載Keras提供的Vgg19網路,所以比較慢。


迭代處理建議用GPU,CPU的話我的老古董迭代一次大概在一分鐘左右



from __future__ import print_function
from keras.preprocessing.image import load_img, img_to_array
import numpy as np
from scipy.optimize import fmin_l_bfgs_b
import time
import argparse
from scipy.misc import imsave
from keras.applications import vgg19
from keras import backend as K
import os
from PIL import Image, ImageFont, ImageDraw, ImageOps, ImageEnhance, ImageFilter
import random
random.seed(0)

def save_img(fname, image, image_enhance=False):  # 影象可以增強
    image = Image.fromarray(image)
    if image_enhance:
        # 亮度增強
        enh_bri = ImageEnhance.Brightness(image)
        brightness = 1.2
        image = enh_bri.enhance(brightness)

        # 色度增強
        enh_col = ImageEnhance.Color(image)
        color = 1.2
        image = enh_col.enhance(color)

        # 銳度增強
        enh_sha = ImageEnhance.Sharpness(image)
        sharpness = 1.2
        image = enh_sha.enhance(sharpness)
    imsave(fname, image)
    return


def smooth(image):  # 模糊圖片
    w, h, c = image.shape
    smoothed_image = np.zeros([w - 2, h - 2,c])
    smoothed_image += image[:w - 2, 2:h,:]
    smoothed_image += image[1:w-1, 2:,:]
    smoothed_image += image[2:, 2:h,:]
    smoothed_image += image[:w-2, 1:h-1,:]
    smoothed_image += image[1:w-1, 2:h,:]
    smoothed_image += image[2:, 1:h - 1,:]
    smoothed_image += image[:w-2, :h-2,:]
    smoothed_image += image[1:w-1, :h - 2,:]
    smoothed_image += image[2:, :h - 2,:]
    smoothed_image /= 9.0
    return smoothed_image.astype("uint8")


def str_to_tuple(s):
    s = list(s)
    ans = list()
    temp = ""
    for i in range(len(s)):
        if s[i] == '(' :
            continue
        if s[i] == ',' or s[i] == ')':
            ans.append(int(temp))
            temp = ""
            continue
        temp += s[i]
    return tuple(ans)


def char_to_picture(text="", font_name="宋體", background_color=(255,255,255), text_color=(0,0,0), pictrue_size=400,
                    text_position=(0, 0), in_meddium=False, reverse_color=False,smooth_times=0,noise=0):
    pictrue_shape = (pictrue_size,pictrue_size)
    im = Image.new("RGB", pictrue_shape, background_color)
    dr = ImageDraw.Draw(im)

    # 由於系統內部不是使用漢字檔名,而是英文名,在此轉換
    if font_name == "宋體":
        font_name = "SIMSUN.ttc"
    if font_name == "楷體":
        font_name = "SIMKAI.ttf"
    if font_name == "黑體":
        font_name = "SIMHEI.ttf"
    if font_name == "等線":
        font_name = "DENG.ttf"
    if font_name == "仿宋":
        font_name = "SIMFANG.ttf"

    # 取得字型檔案的位置
    font_dir = "C:\Windows\Fonts\\" + font_name
    font_size = int(pictrue_size * 0.8 / len(text)) # 設定文字的大小
    font = ImageFont.truetype(font_dir, font_size)

    # 開始繪圖
    # 如果設定了居中,那麼就居中
    # 英文字母的對齊方式並不一樣
    char_dict = []
    for i in range(26):
        char_dict.append(chr(i + ord('a')))
        char_dict.append(chr(i + ord('A')))
    if in_meddium:
        char_num = len(text)
        text_position = (pictrue_shape[0]/2 - char_num*font_size/2, pictrue_shape[1]/2 - font_size/2)  # 中文
        if text in char_dict:
            text_position = (pictrue_shape[0] / 2 - char_num*font_size/4, pictrue_shape[1] / 2 - font_size / 2)  # 英文


    # 開始繪製圖像
    dr.text(text_position, text, font=font, fill=text_color)
    if reverse_color:
        im = ImageOps.invert(im)

    # 隨機擾動
    if noise > 0:
        print("adding noise...")
        im_array = np.array(im)
        noise_num = noise * pictrue_size
        for i in range(noise_num):
            pos = (random.randint(0,pictrue_size-1), random.randint(0,pictrue_size-1))
            color = [random.randint(0,255), random.randint(0,255), random.randint(0,255)]
            im_array[pos[0],pos[1],:] = color
        im = Image.fromarray(im_array)

    # 模糊化圖片
    '''
    for i in range(smooth_times):
        im =im.filter(ImageFilter.GaussianBlur)
    '''
    im_array = np.array(im)
    for i in range(smooth_times):
        im_array = smooth(im_array)
    im = Image.fromarray(im_array)

    # 圖片經過模糊後略有縮小
    im = im.resize(pictrue_shape)
    print("文字轉換圖片成功")
    return im

#第一張風格圖
style_reference_image_path="Style_Migration_For_Artistic_Font_With_CNN/style/fire/2.jpg"
#第二張風格圖
style_reference_image2_path="Style_Migration_For_Artistic_Font_With_CNN/style/fire/1.jpg"
#文字,支援多字
chars='九日王朝'
#尺寸
pictrue_size =300
#背景顏色
background_color=(0,0,0)
#文字顏色
text_color=(255,255,255)
#迭代次數
iterations=50
#模糊處理
smooth_times=20
#隨機噪聲
noise=False
#色度亮度銳度增強
image_enhance=True
#字型
font_name = '楷體'
#黑紙白字
reverse_color =False
#風格圖一張&兩張
image_input_mode ="two_pic"#image_input_mode ="one_pic"#image_input_mode ="one_picT"
#第一張圖的相對權重
two_style_k=0.5
#輸出目錄
result_prefix='Style_Migration_For_Artistic_Font_With_CNN/output/'
# 生成輸入圖片
char_image = char_to_picture(chars,font_name=font_name,background_color=background_color,text_color=text_color,
                             pictrue_size=pictrue_size,in_meddium=True,reverse_color=reverse_color,
                             smooth_times=smooth_times,noise=noise)
width, height = char_image.size

# 風格損失的權重沒有意義,因為對於一張文字圖片來說,不可能有沒有內容損失
style_weight = 1.0

# util function to resize and format pictures into appropriate tensors
def preprocess_image(image):
    """
    預處理圖片,包括變形到(1,width, height)形狀,資料歸一到0-1之間
    :param image: 輸入一張圖片
    :return: 預處理好的圖片
    """
    image = image.resize((width, height))
    image = img_to_array(image)
    image = np.expand_dims(image, axis=0)  # (width, height)->(1,width, height)
    image = vgg19.preprocess_input(image)  # 0-255 -> 0-1.0
    return image

def deprocess_image(x):
    """
    將0-1之間的資料變成圖片的形式返回
    :param x: 資料在0-1之間的矩陣
    :return: 圖片,資料都在0-255之間
    """
    x = x.reshape((width, height, 3))
    x[:, :, 0] += 103.939
    x[:, :, 1] += 116.779
    x[:, :, 2] += 123.68
    # 'BGR'->'RGB'
    x = x[:, :, ::-1]
    x = np.clip(x, 0, 255).astype('uint8')  # 以防溢位255範圍
    return x

# 得到需要處理的資料,處理為keras的變數(tensor),處理為一個(5, width, height, 3)的矩陣
# 分別是文字圖片,風格圖片1,風格圖片1T, 風格圖片2,結果圖片
base_image = K.variable(preprocess_image(char_image))
style_reference_image1 = K.variable(preprocess_image(load_img(style_reference_image_path)))
style_reference_image1_T = K.variable(preprocess_image(load_img(style_reference_image_path).transpose(Image.ROTATE_90)))
try:
    style_reference_image2 = K.variable(preprocess_image(load_img(style_reference_image2_path)))
except:  # 不會用到這個了
    if image_input_mode == "two_pic":
        print("尚未找到第二張圖片,或許您忘記輸入了,請輸入--style_reference_image2_path 第二張圖片的位置")
    style_reference_image2 = K.variable(preprocess_image(load_img(style_reference_image_path)))

combination_image = K.placeholder((1, width, height, 3))
input_tensor = K.concatenate([base_image, style_reference_image1, style_reference_image1_T,
                              style_reference_image2, combination_image], axis=0)
# 結合以上5張圖片,作為輸入向量

# 使用Keras提供的訓練好的Vgg19網路
model = vgg19.VGG19(input_tensor=input_tensor,weights='imagenet', include_top=False)
model.summary()
# Vgg19網路中的不同的名字,儲存起來以備使用
outputs_dict = dict([(layer.name, layer.output) for layer in model.layers])

def gram_matrix(x):  # Gram矩陣
    assert K.ndim(x) == 3
    if K.image_data_format() == 'channels_first':
        features = K.batch_flatten(x)
    else:
        features = K.batch_flatten(K.permute_dimensions(x, (2, 0, 1)))
    gram = K.dot(features, K.transpose(features))
    return gram

# 風格損失,是風格圖片與結果圖片的Gram矩陣之差,並對所有元素求和
def style_loss(style, combination):
    assert K.ndim(style) == 3
    assert K.ndim(combination) == 3
    S = gram_matrix(style)
    C = gram_matrix(combination)
    S_C = S-C
    channels = 3
    size = height * width
    return K.sum(K.square(S_C)) / (4. * (channels ** 2) * (size ** 2))
    #return K.sum(K.pow(S_C,4)) / (4. * (channels ** 2) * (size ** 2))  # 居然和平方沒有什麼不同
    #return K.sum(K.pow(S_C,4)+K.pow(S_C,2)) / (4. * (channels ** 2) * (size ** 2))  # 也能用,花後面出現了葉子


loss = K.variable(0.)
# 計算風格損失,糅合多個特徵層的資料,取平均
#                  [     A,              B,              C,              D,              E,              F     ]
# feature_layers = ['block1_conv1', 'block2_conv1','block3_conv1', 'block4_conv1','block5_conv1','block5_conv4']
#                   A全是顏色,沒有紋理---------------------------------------------------->F全是紋理,沒有顏色
feature_layers = ['block1_conv1','block2_conv1','block3_conv1']
feature_layers_w = [10.0,1.0,1.0]
for i in range(len(feature_layers)):
    # 每一層的權重以及資料
    layer_name, w = feature_layers[i], feature_layers_w[i]
    layer_features = outputs_dict[layer_name]

    style_reference_features1 = layer_features[1, :, :, :]
    combination_features = layer_features[4, :, :, :]

    if image_input_mode == "one_pic":
        style_reference_features_mix = style_reference_features1
    elif image_input_mode == "one_pic_T":
        style_reference_features1_T = layer_features[2, :, :, :]
        style_reference_features_mix = 0.5 * (style_reference_features1 + style_reference_features1_T)
        #style_reference_features_mix = K.maximum(style_reference_features1, style_reference_features1_T)
    else:  # image_input_mode == "two_pic"
        style_reference_features2 = layer_features[3, :, :, :]
        k = two_style_k
        style_reference_features_mix = style_reference_features1 * k + style_reference_features2 * (1-k)

    loss += w * style_loss(style_reference_features_mix, combination_features)


# 求得梯度,輸入combination_image,對loss求梯度
grads = K.gradients(loss, combination_image)

outputs = [loss]
if isinstance(grads, (list, tuple)):
    outputs += grads
else:
    outputs.append(grads)

f_outputs = K.function([combination_image], outputs)

def eval_loss_and_grads(x):  # 輸入x,輸出對應於x的梯度和loss
    if K.image_data_format() == 'channels_first':
        x = x.reshape((1, 3, height, width))
    else:
        x = x.reshape((1, height, width, 3))
    outs = f_outputs([x])  # 輸入x,得到輸出
    loss_value = outs[0]
    if len(outs[1:]) == 1:
        grad_values = outs[1].flatten().astype('float64')
    else:
        grad_values = np.array(outs[1:]).flatten().astype('float64')
    return loss_value, grad_values

# Evaluator可以只需要進行一次計算就能得到所有的梯度和loss
class Evaluator(object):
    def __init__(self):
        self.loss_value = None
        self.grads_values = None

    def loss(self, x):
        assert self.loss_value is None
        loss_value, grad_values = eval_loss_and_grads(x)
        self.loss_value = loss_value
        self.grad_values = grad_values
        return self.loss_value

    def grads(self, x):
        assert self.loss_value is not None
        grad_values = np.copy(self.grad_values)
        self.loss_value = None
        self.grad_values = None
        return grad_values

evaluator = Evaluator()
x = preprocess_image(char_image)
img = deprocess_image(x.copy())
fname = result_prefix + chars + '_原始圖片.png'
save_img(fname, img)

# 開始迭代
for i in range(iterations):
    start_time = time.time()
    print('代數', i,end="   ")
    x, min_val, info = fmin_l_bfgs_b(evaluator.loss, x.flatten(), fprime=evaluator.grads, maxfun=20, epsilon=1e-7)
    # 一個scipy的L-BFGS優化器
    print('目前loss:', min_val,end="  ")
    # 儲存生成的圖片
    img = deprocess_image(x.copy())
    fname = result_prefix + chars + '_代數_%d.png' % i
    end_time = time.time()
    print('耗時%.2f s' % (end_time - start_time))

    if i%5 == 0 or i == iterations-1:
        save_img(fname, img, image_enhance=image_enhance)
        print('檔案儲存為', fname)

測試截圖:

原文提供的輸出:


自己訓練的輸出:



……醜的一比

嗯嗯,果然不是親生的養不熟o(︶︿︶)o